367 research outputs found

    Kohn Anomalies in Superconductors

    Full text link
    I present the detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor. I demonstrate that an anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the phonon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is {\it stronger} than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La1.85Sr.15CuO4\rm La_{1.85}Sr_{.15}CuO_4.Comment: 18 pages (revtex) + 11 figures (upon request), NSF-ITP-93-7

    Phase Relaxation of Electrons in Disordered Conductors

    Full text link
    Conduction electrons in disordered metals and heavily doped semiconductors at low temperatures preserve their phase coherence for a long time: phase relaxation time τϕ\tau_\phi can be orders of magnitude longer than the momentum relaxation time. The large difference in these time scales gives rise to well known effects of weak localization, such as anomalous magnetoresistance. Among other interesting characteristics, study of these effects provide quantitative information on the dephasing rate 1/τϕ1/\tau_\phi. This parameter is of fundamental interest: the relation between /τϕ\hbar/\tau_\phi and the temperature TT (a typical energy scale of an electron) determines how well a single electron state is defined. We will discuss the basic physical meaning of 1/τϕ1/\tau_\phi in different situations and its difference from the energy relaxation rate. At low temperatures, the phase relaxation rate is governed by collisions between electrons. We will review existing theories of dephasing by these collisions or (which is the same) by electric noise inside the sample. We also discuss recent experiments on the magnetoresistance of 1D systems: some of them show saturation of 1/τϕ1/\tau_\phi at low temperatures, the other do not. To resolve this contradiction we discuss dephasing by an external microwave field and by nonequilibrium electric noise.Comment: Order of figures and references corrected; one reference added; 15 pages, 2 figures, lecture given on 10th International Winterschool on New Developments in Solid State Physics, Mauterndorf, Salzburg, Austria; 23-27 Feb. 199

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Anomaly-matching and Higgs-less effective theories

    Full text link
    We reconsider the low-energy effective theory for Higgs-less electroweak symmetry breaking: we study the anomaly-matching in the situation where all Goldstone fields disappear from the spectrum as a result of the Higgs mechanism. We find that the global SU(2)_L x SU(2)_R x U(1)_{B-L} symmetry of the underlying theory, which is spontaneously broken to SU(2)_{L+R} x U(1)_{B-L} has to be anomaly-free. For the sake of generality, we include the possibility of light spin-1/2 bound states resulting from the dynamics of the strongly-interacting symmetry-breaking sector, in addition to the Goldstone bosons. Such composite fermions may have non-standard couplings at the leading order, and an arbitrary total B-L charge. In order to perform the anomaly-matching in that case, we generalize the construction of the Wess-Zumino effective lagrangian. Composite fermions beyond the three known generations are theoretically allowed, and there are no restrictions from the anomaly-matching on their couplings nor on their U(1)_{B-L} charge. Absence of global anomalies for the composite sector as a whole does not preclude anomalous triple gauge boson couplings arising from composite fermion triangular diagrams. On the other hand, the trace of B-L over elementary fermions must vanish if all Goldstone modes are to disappear from the spectrum.Comment: Keywords: Anomalies in Field and String Theories, Spontaneous Symmetry Breaking, Beyond the Standard Model, Chiral Lagrangians. 33 pages, 7 figure

    Kosterlitz Thouless Universality in Dimer Models

    Full text link
    Using the monomer-dimer representation of strongly coupled U(N) lattice gauge theories with staggered fermions, we study finite temperature chiral phase transitions in (2+1) dimensions. A new cluster algorithm allows us to compute monomer-monomer and dimer-dimer correlations at zero monomer density (chiral limit) accurately on large lattices. This makes it possible to show convincingly, for the first time, that these models undergo a finite temperature phase transition which belongs to the Kosterlitz-Thouless universality class. We find that this universality class is unaffected even in the large N limit. This shows that the mean field analysis often used in this limit breaks down in the critical region.Comment: 4 pages, 4 figure

    Critical Currents of Ideal Quantum Hall Superfluids

    Full text link
    Filling factor ν=1\nu=1 bilayer electron systems in the quantum Hall regime have an excitonic-condensate superfluid ground state when the layer separation dd is less than a critical value dcd_c. On a quantum Hall plateau current injected and removed through one of the two layers drives a dissipationless edge current that carries parallel currents, and a dissipationless bulk supercurrent that carries opposing currents in the two layers. In this paper we discuss the theory of finite supercurrent bilayer states, both in the presence and in the absence of symmetry breaking inter-layer hybridization. Solutions to the microscopic mean-field equations exist at all condensate phase winding rates for zero and sufficiently weak hybridization strengths. We find, however, that collective instabilities occur when the supercurrent exceeds a critical value determined primarily by a competition between direct and exchange inter-layer Coulomb interactions. The critical current is estimated using a local stability criterion and varies as (dcd)1/2(d_c-d)^{1/2} when dd approaches dcd_c from below. For large inter-layer hybridization, we find that the critical current is limited by a soliton instability of microscopic origin.Comment: 18 RevTeX pgs, 21 eps figure

    Low-Energy Photon-Photon Collisions to Two-Loop Order

    Full text link
    We evaluate the amplitude for γγπ0π0\gamma \gamma \rightarrow \pi^0 \pi^0 to two loops in chiral perturbation theory. The three new counterterms which enter at this order in the low-energy expansion are estimated with resonance saturation. We find that the cross section agrees rather well with the available data and with dispersion theoretic calculations even substantially above threshold. Numerical results for the Compton cross section and for the neutral pion polarizabilities are also given to two-loop accuracy.Comment: 48 pages, LaTex, 11 figs. (figures not included; available upon request from [email protected]),BUTP-93/18,LNF-93/077(P),PSI-PR-93-1

    Semiclassical theory of transport in a random magnetic field

    Get PDF
    We study the semiclassical kinetics of 2D fermions in a smoothly varying magnetic field B(r)B({\bf r}). The nature of the transport depends crucially on both the strength B0B_0 of the random component of B(r)B({\bf r}) and its mean value Bˉ\bar{B}. For Bˉ=0\bar{B}=0, the governing parameter is α=d/R0\alpha=d/R_0, where dd is the correlation length of disorder and R0R_0 is the Larmor radius in the field B0B_0. While for α1\alpha\ll 1 the Drude theory applies, at α1\alpha\gg 1 most particles drift adiabatically along closed contours and are localized in the adiabatic approximation. The conductivity is then determined by a special class of trajectories, the "snake states", which percolate by scattering at the saddle points of B(r)B({\bf r}) where the adiabaticity of their motion breaks down. The external field also suppresses the diffusion by creating a percolation network of drifting cyclotron orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation, yielding an exponential drop of the conductivity at large Bˉ\bar{B}. In the regime α1\alpha\gg 1 the crossover between the snake-state percolation and the percolation of the drift orbits with increasing Bˉ\bar{B} has the character of a phase transition (localization of snake states) smeared exponentially weakly by non-adiabatic effects. The ac conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also discuss the nature of the quantum magnetooscillations. Detailed numerical studies confirm the analytical findings. The shape of the magnetoresistivity at α1\alpha\sim 1 is in good agreement with experimental data in the FQHE regime near ν=1/2\nu=1/2.Comment: 22 pages REVTEX, 14 figure

    The Two-Loop Pinch Technique in the Electroweak Sector

    Get PDF
    The generalization of the two-loop Pinch Technique to the Electroweak Sector of the Standard Model is presented. We restrict ourselves to the case of conserved external currents, and provide a detailed analysis of both the charged and neutral sectors. The crucial ingredient for this construction is the identification of the parts discarded during the pinching procedure with well-defined contributions to the Slavnov-Taylor identity satisfied by the off-shell one-loop gauge-boson vertices; the latter are nested inside the conventional two-loop self-energies. It is shown by resorting to a set of powerful identities that the two-loop effective Pinch Technique self-energies coincide with the corresponding ones computed in the Background Feynman gauge. The aforementioned identities are derived in the context of the Batalin-Vilkovisky formalism, a fact which enables the individual treatment of the self-energies of the photon and the ZZ-boson. Some possible phenomenological applications are briefly discussed.Comment: 50 pages, uses axodra
    corecore