1,193 research outputs found

    Scaling dimensions of higher-charge monopoles at deconfined critical points

    Get PDF
    The classical cubic dimer model has a columnar ordering transition that is continuous and described by a critical Anderson–Higgs theory containing an SU(2)-symmetric complex field minimally coupled to a noncompact U(1) gauge theory. Defects in the dimer constraints correspond to monopoles of the gauge theory, with charge determined by the deviation from unity of the dimer occupancy. By introducing such defects into Monte Carlo simulations of the dimer model at its critical point, we determine the scaling dimensions y2 = 1:48 _ 0:07 and y3 = 0:20 _ 0:03 for the operators corresponding to defects of charge q = 2 and 3 respectively. These results, which constitute the first direct determination of the scaling dimensions, shed light on the deconfined critical point of spin-12 quantum antiferromagnets, thought to belong to the same universality class. In particular, the positive value of y3 implies that the transition in the JQ model on the honeycomb lattice is of first order

    The effect of irradiation-induced disorder on the conductivity and critical temperature of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu(SCN)2_2

    Get PDF
    We have introduced defects into clean samples of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu(SCN)2_2 in order to determine their effect on the temperature dependence of the conductivity and the critical temperature TcT_{\rm c}. We find a violation of Matthiessen's rule that can be explained by a model of the conductivity involving a defect-assisted interlayer channel which acts in parallel with the band-like conductivity. We observe an unusual dependence of TcT_{\rm c} on residual resistivity which is not consistent with the generalised Abrikosov-Gor'kov theory for an order parameter with a single component, providing an important constraint on models of the superconductivity in this material

    MODELING A CONTROL SYSTEM FOR ORGANIZATIONAL PROCESSES

    Get PDF

    Towards Structure-Property-Function Relationships for Eumelanin

    Full text link
    We discuss recent progress towards the establishment of important structure-property-function relationships in eumelanins - key functional bio-macromolecular systems responsible for photo-protection and immune response in humans, and implicated in the development of melanoma skin cancer. We focus on the link between eumelanin's secondary structure and optical properties such as broad band UV-visible absorption and strong non-radiative relaxation; both key features of the photo-protective function. We emphasise the insights gained through a holistic approach combining optical spectroscopy with first principles quantum chemical calculations, and advance the hypothesis that the robust functionality characteristic of eumelanin is related to extreme chemical and structural disorder at the secondary level. This inherent disorder is a low cost natural resource, and it is interesting to speculate as to whether it may play a role in other functional bio-macromolecular systems.Comment: 19 pages, 8 figures, Invited highlight article for Soft Matte

    Order by Disorder in Spin-Orbit Coupled Bose-Einstein Condensates

    Full text link
    Motivated by recent experiments, we investigate the system of isotropically-interacting bosons with Rashba spin-orbit coupling. At the non-interacting level, there is a macroscopic ground-state degeneracy due to the many ways bosons can occupy the Rashba spectrum. Interactions treated at the mean-field level restrict the possible ground-state configurations, but there remains an accidental degeneracy not corresponding to any symmetry of the Hamiltonian, indicating the importance of fluctuations. By finding analytical expressions for the collective excitations in the long-wavelength limit and through numerical solution of the full Bogoliubov- de Gennes equations, we show that the system condenses into a single momentum state of the Rashba spectrum via the mechanism of order by disorder. We show that in 3D the quantum depletion for this system is small, while the thermal depletion has an infrared logarithmic divergence, which is removed for finite-size systems. In 2D, on the other hand, thermal fluctuations destabilize the system.Comment: 5 page

    The pre treatment systemic inflammatory response is an important determinant of poor pathologic response for patients undergoing neoadjuvant therapy for rectal cancer

    Get PDF
    Background Not all patients respond equally to neoadjuvant chemoradiotherapy (nCRT), with subsequent effects on survival. The systemic inflammatory response has been shown to predict long-term outcomes in colorectal cancer. The current study examined the association between systemic inflammation and nCRT in patients with rectal cancer. Methods Between 1999 and 2010, patients who underwent nCRT were identified. Serum measurements of hemoglobin, C-reactive protein, albumin, modified Glasgow prognostic score (mGPS), and differential white cell counts were obtained before and after nCRT. The Rödel scoring system measured pathologic tumor regression, and magnetic resonance imaging and computed tomography determined radiologic staging. Results The study included 79 patients. Of these patients, 37% were radiologically downstaged, and 44% were categorized as showing a good pathologic response (Rödel scores 3 and 4). As a validated measure of the systemic inflammatory response, mGPS (P = 0.022) was associated with a poor pathologic response to nCRT. A radiologic response was associated with a good pathologic response to treatment (P = 0.003). A binary logistic regression model identified mGPS (odds ratio [OR] 0.27; 95% confidence interval [CI] 0.07–0.96; P = 0.043) and radiologic response (OR 0.43; 95% CI 0.18–0.99; P = 0.048) as strong independent predictors of a pathologic response to treatment. Conclusion The current study showed that a systemic inflammatory response before nCRT is associated with a poor pathologic response. Further study in a prospective controlled trial setting is warranted. Stephan B. Dreyer and Arfon G. M. T. Powell—contributed equally. Colorectal cancer (CRC) is the third most common cancer and the second highest cause of cancer death in the United Kingdom.1 The 5-year survival rate for CRC still is less than 60% with surgery alone, offering the only chance of cure. Rectal cancers comprise about one third of surgical resections for colorectal cancer.2 The widely adapted surgical technique of total mesorectal excision (TME), increased centralization, specialization of rectal surgery, and earlier disease detection have led to improved survival in the last 30 years.3,4 Preoperative neoadjuvant radiotherapy with or without chemotherapy currently is accepted as a standard of care for patients with margin-threatening rectal cancer. This increases disease-free survival (DFS) and sphincter preservation rates and improves circumferential resection margins and local recurrence rates.5–8 Current management of CRC in the United Kingdom involves evaluating patients using magnetic resonance imaging (MRI) and computed tomography (CT) before treatment to identify those with margin-threatening disease (T3 or T4).9 These patients are offered neoadjuvant chemoradiotherapy (nCRT) before surgical resection.10 Not all patients respond to nCRT, and there is a need to identify biomarkers of response because treatment is associated with significant morbidity. Rödel et al.11 have shown that the presence of spontaneous apoptosis in the resected specimen is a good marker of tumor regression and improved prognosis. The prognostic value of the systemic inflammatory response (SIR) has been widely studied in gastrointestinal cancers, particularly in the operative setting, using measurements of circulating markers including C-reactive protein (CRP), albumin, the modified Glasgow prognostic score (mGPS), the neutrophil lympocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), and more recently, the neutrophil-platelet score (NPS) and the derived neutrophil-to-lymphocyte ratio (dNLR).12–16 This study investigated the association between markers of the systemic inflammatory response and the pathologic response to nCRT in patients with rectal cancer

    Genetic Background and Allorecognition Phenotype in Hydractinia symbiolongicarpus

    Get PDF
    The Hydractinia allorecognition complex (ARC) was initially identified as a single chromosomal interval using inbred and congenic lines. The production of defined lines necessarily homogenizes genetic background and thus may be expected to obscure the effects of unlinked allorecognition loci should they exist. Here, we report the results of crosses in which inbred lines were out-crossed to wild-type animals in an attempt to identify dominant, codominant, or incompletely dominant modifiers of allorecognition. A claim for the existence of modifiers unlinked to ARC was rejected for three different genetic backgrounds. Estimates of the genetic map distance of ARC in two wild-type haplotypes differed markedly from one another and from that measured in congenic lines. These results suggest that additional allodeterminants exist in the Hydractinia ARC
    • …
    corecore