536 research outputs found

    A stringent yeast two-hybrid matrix screening approach for protein-protein interaction discovery

    No full text
    The yeast two-hybrid (Y2H) system is currently one of the most important techniques for protein-protein interaction (PPI) discovery. Here, we describe a stringent three-step Y2H matrix interaction approach that is suitable for systematic PPI screening on a proteome scale. We start with the identification and elimination of autoactivating strains that would lead to false-positive signals and prevent the identification of interactions. Nonautoactivating strains are used for the primary PPI screen that is carried out in quadruplicate with arrayed preys. Interacting pairs of baits and preys are identified in a pairwise retest step. Only PPI pairs that pass the retest step are regarded as potentially biologically relevant interactions and are considered for further analysis

    Increased entropy of signal transduction in the cancer metastasis phenotype

    Get PDF
    Studies into the statistical properties of biological networks have led to important biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis. Further exploration of such integrated cancer expression and protein interaction networks will therefore be a fruitful endeavour.Comment: 5 figures, 2 Supplementary Figures and Table

    Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Get PDF
    Essentially all biological processes depend on protein-protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    SynSysNet:integration of experimental data on synaptic protein-protein interactions with drug-target relations

    Get PDF
    We created SynSysNet, available online at http://bioinformatics.charite.de/ synsysnet, to provide a platform that creates a comprehensive 4D network of synaptic interactions. Neuronal synapses are fundamental structures linking nerve cells in the brain and they are responsible for neuronal communication and information processing. These processes are dynamically regulated by a network of proteins. New developments in interaction prote-omics and yeast two-hybrid methods allow unbiased detection of interactors. The consolidation of data from different resources and methods is important to understand the relation to human behaviour and disease and to identify new therapeutic approaches. To this end, we established SynSysNet from a set of ∼1000 synapse specific proteins, their structures and small-molecule interactions. For two-thirds of these, 3D structures are provided (from Protein Data Bank and homology modelling). Drug-target interactions for 750 approved drugs and 50000 compounds, as well as 5000 experimentally validated protein-protein interactions, are included. The resulting interaction network and user-selected parts can be viewed interactively and exported in XGMML. Approximately 200 involved pathways can be explored regarding drug-target interactions. Homology-modelled structures are downloadable in Protein Data Bank format, and drugs are available as MOL-files. Protein-protein interactions and drug-target interactions can be viewed as networks; corresponding PubMed IDs or sources are given. © The Author(s) 2012

    Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    Get PDF
    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone.National Institutes of Health (U.S.) (NIH grant P50-GM68762)National Institutes of Health (U.S.) (Grant U54-CA112967)United States. Dept. of Defense (Institute for Collaborative Biotechnologies

    Structure and internal dynamics of short RNA duplexes determined by a combination of pulsed EPR methods and MD simulations

    Get PDF
    We used EPR spectroscopy to characterize the structure of RNA duplexes and their internal twist, stretch and bending motions. We prepared eight 20 base-pair long RNA duplexes containing the rigid spin-label Çm, a cytidine analogue, at two positions and acquired orientation-selective PELDOR/DEER data. By using different frequency bands (X-, Q-, G-band), detailed information about the distance and orientation of the labels was obtained and provided insights into the global conformational dynamics of the RNA duplex. We used 19F Mims ENDOR experiments on three singly Çm and singly fluorine labeled RNA duplexes to determine the exact position of the Çm spin label in the helix. In a quantitative comparison to MD simulations of RNA with and without Çm spin labels, we found that state-of-the-art force fields with explicit parameterization of the spin label were able to describe the conformational ensemble present in our experiments. The MD simulations further confirmed that the Çm spin labels are excellent mimics of cytidine inducing only small local changes in the RNA structure. Çm spin labels are thus ideally suited for high-precision EPR experiments to probe the structure and, in conjunction with MD simulations, motions of RNA

    A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein

    Get PDF
    The spliceosomal RNA helicase Brr2 is required for the assembly of a catalytically active spliceosome on a messenger RNA precursor. Brr2 exhibits an unusual organization with tandem helicase units, each comprising dual RecA-like domains and a Sec63 homology unit, preceded by a more than 400-residue N-terminal helicase-associated region. Whereas recent crystal structures have provided insights into the molecular architecture and regulation of the Brr2 helicase region, little is known about the structural organization and function of its N-terminal part. Here, a near-atomic resolution crystal structure of a PWI-like domain that resides in the N-terminal region of Chaetomium thermophilum Brr2 is presented. CD spectroscopic studies suggested that this domain is conserved in the yeast and human Brr2 orthologues. Although canonical PWI domains act as low-specificity nucleic acid-binding domains, no significant affinity of the unusual PWI domain of Brr2 for a broad spectrum of DNAs and RNAs was detected in band-shift assays. Consistently, the C. thermophilum Brr2 PWI-like domain, in the conformation seen in the present crystal structure, lacks an expanded positively charged surface patch as observed in at least one canonical, nucleic acid-binding PWI domain. Instead, in a comprehensive yeast two-hybrid screen against human spliceosomal proteins, fragments of the N-terminal region of human Brr2 were found to interact with several other spliceosomal proteins. At least one of these interactions, with the Prp19 complex protein SPF27, depended on the presence of the PWI-like domain. The results suggest that the N-terminal region of Brr2 serves as a versatile protein-protein interaction platform in the spliceosome and that some interactions require or are reinforced by the PWI-like domain

    Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women

    Get PDF
    BACKGROUND: Particulate matter (PM) exposure leads to premature death, mainly due to respiratory and cardiovascular diseases. OBJECTIVES: Identification of transcriptomic biomarkers of air pollution exposure and effect in a healthy adult population. METHODS: Microarray analyses were performed in 98 healthy volunteers (48 men, 50 women). The expression of eight sex-specific candidate biomarker genes (significantly associated with PM(10) in the discovery cohort and with a reported link to air pollution-related disease) was measured with qPCR in an independent validation cohort (75 men, 94 women). Pathway analysis was performed using Gene Set Enrichment Analysis. Average daily PM(2.5) and PM(10) exposures over 2-years were estimated for each participant’s residential address using spatiotemporal interpolation in combination with a dispersion model. RESULTS: Average long-term PM(10) was 25.9 (± 5.4) and 23.7 (± 2.3) μg/m(3) in the discovery and validation cohorts, respectively. In discovery analysis, associations between PM(10) and the expression of individual genes differed by sex. In the validation cohort, long-term PM(10) was associated with the expression of DNAJB5 and EAPP in men and ARHGAP4 (p = 0.053) in women. AKAP6 and LIMK1 were significantly associated with PM(10) in women, although associations differed in direction between the discovery and validation cohorts. Expression of the eight candidate genes in the discovery cohort differentiated between validation cohort participants with high versus low PM(10) exposure (area under the receiver operating curve = 0.92; 95% CI: 0.85, 1.00; p = 0.0002 in men, 0.86; 95% CI: 0.76, 0.96; p = 0.004 in women). CONCLUSIONS: Expression of the sex-specific candidate genes identified in the discovery population predicted PM(10) exposure in an independent cohort of adults from the same area. Confirmation in other populations may further support this as a new approach for exposure assessment, and may contribute to the discovery of molecular mechanisms for PM-induced health effects. CITATION: Vrijens K, Winckelmans E, Tsamou M, Baeyens W, De Boever P, Jennen D, de Kok TM, Den Hond E, Lefebvre W, Plusquin M, Reynders H, Schoeters G, Van Larebeke N, Vanpoucke C, Kleinjans J, Nawrot TS. 2017. Sex-specific associations between particulate matter exposure and gene expression in independent discovery and validation cohorts of middle-aged men and women. Environ Health Perspect 125:660–669; http://dx.doi.org/10.1289/EHP37

    The Pathway Coexpression Network: Revealing pathway relationships.

    Get PDF
    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer's Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/
    corecore