380 research outputs found
Prelude to the Anthropocene: Two new North American Land Mammal Ages (NALMAs)
Human impacts have left and are leaving distinctive imprints in the geological record. Here we show that in North America, the human-caused changes evident in the mammalian fossil record since c. 14,000 years ago are as pronounced as earlier faunal changes that subdivide Cenozoic epochs into the North American Land Mammal Ages (NALMAs). Accordingly, we define two new North American Land Mammal Ages, the Santarosean and the Saintagustinean, which subdivide Holocene time and complete a biochronologic system that has proven extremely useful in dating terrestrial deposits and in revealing major features of faunal change through the past 66 million years. The new NALMAs highlight human-induced changes to the Earth system, and inform the debate on whether or not defining an Anthropocene epoch is justified, and if so, when it began
External field control of donor electron exchange at the Si/SiO2 interface
We analyze several important issues for the single- and two-qubit operations
in Si quantum computer architectures involving P donors close to a SiO2
interface. For a single donor, we investigate the donor-bound electron
manipulation (i.e. 1-qubit operation) between the donor and the interface by
electric and magnetic fields. We establish conditions to keep a donor-bound
state at the interface in the absence of local surface gates, and estimate the
maximum planar density of donors allowed to avoid the formation of a
2-dimensional electron gas at the interface. We also calculate the times
involved in single electron shuttling between the donor and the interface. For
a donor pair, we find that under certain conditions the exchange coupling (i.e.
2-qubit operation) between the respective electron pair at the interface may be
of the same order of magnitude as the coupling in GaAs-based two-electron
double quantum dots where coherent spin manipulation and control has been
recently demonstrated (for example for donors ~10 nm below the interface and
\~40 nm apart, J~10^{-4} meV), opening the perspective for similar experiments
to be performed in Si.Comment: 11 pages, 15 figures. Changes in Eq. 24 plus minor typo
Granular size segregation in underwater sand ripples
We report an experimental study of a binary sand bed under an oscillating
water flow. The formation and evolution of ripples is observed. The appearance
of a granular segregation is shown to strongly depend on the sand bed
preparation. The initial wavelength of the mixture is measured. In the final
steady state, a segregation in volume is observed instead of a segregation at
the surface as reported before. The correlation between this phenomenon and the
fluid flow is emphasised. Finally, different ``exotic'' patterns and their
geophysical implications are presented.Comment: 8 page
Ripple and kink dynamics
We propose a relevant modification of the Nishimori-Ouchi model [{\em Phys.
Rev. Lett.} {\bf 71}, 197 (1993)] for granular landscape erosion. We explicitly
introduce a new parameter: the angle of repose , and a new process:
avalanches. We show that the parameter leads to an asymmetry of the
ripples, as observed in natural patterns. The temporal evolution of the maximum
ripple height is limited and not linear, according to recent
observations. The ripple symmetry and the kink dynamics are studied and
discussed.Comment: 7 pages, 10 figure, RevTe
Phosphorus donors in highly strained silicon
The hyperfine interaction of phosphorus donors in fully strained Si thin
films grown on virtual SiGe substrates with is
determined via electrically detected magnetic resonance. For highly strained
epilayers, hyperfine interactions as low as 0.8 mT are observed, significantly
below the limit predicted by valley repopulation. Within a Green's function
approach, density functional theory (DFT) shows that the additional reduction
is caused by the volume increase of the unit cell and a local relaxation of the
Si ligands of the P donor.Comment: 12 pages, 3 figure
Exercise Strengthens Central Nervous System Modulation of Pain in Fibromyalgia
To begin to elucidate the mechanisms underlying the benefits of exercise for chronic pain, we assessed the influence of exercise on brain responses to pain in fibromyalgia (FM). Complete data were collected for nine female FM patients and nine pain-free controls (CO) who underwent two functional neuroimaging scans, following exercise (EX) and following quiet rest (QR). Brain responses and pain ratings to noxious heat stimuli were compared within and between groups. For pain ratings, there was a significant (p \u3c 0.05) Condition by Run interaction characterized by moderately lower pain ratings post EX compared to QR (d = 0.39–0.41) for FM but similar to ratings in CO (d = 0.10–0.26), thereby demonstrating that exercise decreased pain sensitivity in FM patients to a level that was analogous to pain-free controls. Brain responses demonstrated a significant within-group difference in FM patients, characterized by less brain activity bilaterally in the anterior insula following QR as compared to EX. There was also a significant Group by Condition interaction with FM patients showing less activity in the left dorsolateral prefrontal cortex following QR as compared to post-EX and CO following both conditions. These results suggest that exercise appeared to stimulate brain regions involved in descending pain inhibition in FM patients, decreasing their sensitivity to pain. Thus, exercise may benefit patients with FM via improving the functional capacity of the pain modulatory system
Using MGA to shorten the beef breeding season (2002)
Modified conventional synchronization systems for beef cows boost fertility and increase the total number of females that can be inseminated.New March 2002 -- Extension website
Coalescence in the 1D Cahn-Hilliard model
We present an approximate analytical solution of the Cahn-Hilliard equation
describing the coalescence during a first order phase transition. We have
identified all the intermediate profiles, stationary solutions of the noiseless
Cahn-Hilliard equation. Using properties of the soliton lattices, periodic
solutions of the Ginzburg-Landau equation, we have construct a family of ansatz
describing continuously the processus of destabilization and period doubling
predicted in Langer's self similar scenario
The Stability Balloon for Two-dimensional Vortex Ripple Patterns
Patterns of vortex ripples form when a sand bed is subjected to an
oscillatory fluid flow. Here we describe experiments on the response of regular
vortex ripple patterns to sudden changes of the driving amplitude a or
frequency f. A sufficient decrease of f leads to a "freezing" of the pattern,
while a sufficient increase of f leads to a supercritical secondary "pearling"
instability. Sufficient changes in the amplitude a lead to subcritical
secondary "doubling" and "bulging" instabilities. Our findings are summarized
in a "stability balloon" for vortex ripple pattern formation.Comment: 4 pages, 5 figure
Dynamical models for sand ripples beneath surface waves
We introduce order parameter models for describing the dynamics of sand
ripple patterns under oscillatory flow. A crucial ingredient of these models is
the mass transport between adjacent ripples, which we obtain from detailed
numerical simulations for a range of ripple sizes. Using this mass transport
function, our models predict the existence of a stable band of wavenumbers
limited by secondary instabilities. Small ripples coarsen in our models and
this process leads to a sharply selected final wavenumber, in agreement with
experimental observations.Comment: 9 pages. Shortened version of previous submissio
- …