2,572 research outputs found
Combustion system processes leading to corrosive deposits
Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon
Stereocontrolled enantioselective total synthesis of the [2+2] quadrigemine alkaloids.
A unified strategy for enantioselective total synthesis of all stereoisomers of the 2+2 family of quadrigemine alkaloids is reported. In this approach, two enantioselective intramolecular Heck reactions are carried out at the same time on precursors fashioned in four steps from either meso- or (+)-chimonanthine to form the two critical quaternary carbons of the peripheral cyclotryptamine rings of these products. Useful levels of catalyst control are realized in either desymmetrizing a meso precursor or controlling diastereoselectivity in elaborating C2-symmetic intermediates. None of the synthetic quadrigemines are identical with alkaloids isolated previously and referred to as quadrigemines A and E. In addition, we report improvements in our previous total syntheses of (+)- or (-)-quadrigemine C that shortened the synthetic sequence to 10 steps and provided these products in 2.2% overall yield from tryptamine
Theoretical and experimental studies of the deposition of Na2So4 from seeded combustion gases
Flames in a Mach 0.3 atmospheric pressure laboratory burner rig were doped with sea salt, NaS04, and NaCl, respectively, in an effort to validate theoretical dew point predictions made by a local thermochemical equilibrium (LTCE) method of predicting condensation temperatures of sodium sulfate in flame environments. Deposits were collected on cylindrical platinum targets placed in the combustion products, and the deposition was studied as a function of collector temperature. Experimental deposition onset temperatures checked within experimental error with LTCE-predicted temperatures. A multicomponent mass transfer equation was developed to predict the rate of deposition of Na2SO4(c) via vapor transport at temperatures below the deposition onset temperature. Agreement between maximum deposition rates predicted by this chemically frozen boundary layer (CFBL) theory and those obtained in the seeded laboratory burner experiments is good
Optimal band selection for dimensionality reduction of hyperspectral imagery
Hyperspectral images have many bands requiring significant computational power for machine interpretation. During image pre-processing, regions of interest that warrant full examination need to be identified quickly. One technique for speeding up the processing is to use only a small subset of bands to determine the 'interesting' regions. The problem addressed here is how to determine the fewest bands required to achieve a specified performance goal for pixel classification. The band selection problem has been addressed previously Chen et al., Ghassemian et al., Henderson et al., and Kim et al.. Some popular techniques for reducing the dimensionality of a feature space, such as principal components analysis, reduce dimensionality by computing new features that are linear combinations of the original features. However, such approaches require measuring and processing all the available bands before the dimensionality is reduced. Our approach, adapted from previous multidimensional signal analysis research, is simpler and achieves dimensionality reduction by selecting bands. Feature selection algorithms are used to determine which combination of bands has the lowest probability of pixel misclassification. Two elements required by this approach are a choice of objective function and a choice of search strategy
Magnetic friction in Ising spin systems
A new contribution to friction is predicted to occur in systems with magnetic
correlations: Tangential relative motion of two Ising spin systems pumps energy
into the magnetic degrees of freedom. This leads to a friction force
proportional to the area of contact. The velocity and temperature dependence of
this force are investigated. Magnetic friction is strongest near the critical
temperature, below which the spin systems order spontaneously.
Antiferromagnetic coupling leads to stronger friction than ferromagnetic
coupling with the same exchange constant. The basic dissipation mechanism is
explained. If the coupling of the spin system to the heat bath is weak, a
surprising effect is observed in the ordered phase: The relative motion acts
like a heat pump cooling the spins in the vicinity of the friction surface.Comment: 4 pages, 4 figure
Measuring vertebrate telomeres: applications and limitations
Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic
chromosomes that function in stabilizing chromosomal end integrity.
In vivo
studies of
somatic tissue of mammals and birds have shown a correlation between telomere length and
organismal age within species, and correlations between telomere shortening rate and
lifespan among species. This result presents the tantalizing possibility that telomere length
could be used to provide much needed information on age, ageing and survival in natural
populations where longitudinal studies are lacking. Here we review methods available for
measuring telomere length and discuss the potential uses and limitations of telomeres as
age and ageing estimators in the fields of vertebrate ecology, evolution and conservation
Distinct Frontal Ablation Processes Drive Heterogeneous Submarine Terminus Morphology
An edited version of this paper was published by AGU. Copyright 2019 American Geophysical Union.Calving and submarine melt drive frontal ablation and sculpt the ice face of marineâterminating glaciers. However, there are sparse observations of submarine termini, which limit estimates of spatially varying submarine melt. Here we present a detailed survey of a west Greenland glacier to reveal heterogeneity in submarine terminus morphology. We find that the majority of the terminus (~77%) is undercut, driven by calving in the upper water column and submarine melting at depth. The remaining ~23% of the terminus is overcut, driven by calving alone. We use observations of six subglacial discharge outlets, combined with a plume model, to estimate spatially varying discharge fluxes. While small discharge fluxes (<43 m3/s) feed numerous, deeply undercut outlets with subsurface plumes, ~70% of the net subglacial flux emerges at the terminus center, producing a vigorous, surfaceâreaching plume. This primary outlet drives large, localized seasonal retreat that exceeds calving rates at secondary outlets
Experimental application of sum rules for electron energy loss magnetic chiral dichroism
We present a derivation of the orbital and spin sum rules for magnetic
circular dichroic spectra measured by electron energy loss spectroscopy in a
transmission electron microscope. These sum rules are obtained from the
differential cross section calculated for symmetric positions in the
diffraction pattern. Orbital and spin magnetic moments are expressed explicitly
in terms of experimental spectra and dynamical diffraction coefficients. We
estimate the ratio of spin to orbital magnetic moments and discuss first
experimental results for the Fe L_{2,3} edge.Comment: 11 pages, 2 figure
An asymptotic form of the reciprocity theorem with applications in x-ray scattering
The emission of electromagnetic waves from a source within or near a
non-trivial medium (with or without boundaries, crystalline or amorphous, with
inhomogeneities, absorption and so on) is sometimes studied using the
reciprocity principle. This is a variation of the method of Green's functions.
If one is only interested in the asymptotic radiation fields the generality of
these methods may actually be a shortcoming: obtaining expressions valid for
the uninteresting near fields is not just a wasted effort but may be
prohibitively difficult. In this work we obtain a modified form the reciprocity
principle which gives the asymptotic radiation field directly. The method may
be used to obtain the radiation from a prescribed source, and also to study
scattering problems. To illustrate the power of the method we study a few
pedagogical examples and then, as a more challenging application we tackle two
related problems. We calculate the specular reflection of x rays by a rough
surface and by a smoothly graded surface taking polarization effects into
account. In conventional treatments of reflection x rays are treated as scalar
waves, polarization effects are neglected. This is a good approximation at
grazing incidence but becomes increasingly questionable for soft x rays and UV
at higher incidence angles.
PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure
- âŠ