932 research outputs found

    Distinct microalgae species for food—part 2: comparative life cycle assessment of microalgae and fish for eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and protein

    Get PDF
    The production of food for a growing world population is a great challenge. In particular, protein and the long-chain n-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), which exert a series of potential health effects, are scarce resources in the context of global food security. Fish from wild capture and aquaculture production cannot meet the current demand for EPA and DHA; therefore, a supplementation with alternative sources is crucial. Specific microalgae species have been shown to be a lucrative source of EPA, DHA, and protein, in particular, the oleaginous microalgae Nannochloropsis sp. and Phaeodactylum tricornutum. This study aimed to compare different cultivation scenarios of Nannochloropsis sp. and P. tricornutum with the production of aquaculture and capture fish as traditional sources of EPA and DHA in terms of environmental impacts. Scenarios included borosilicate glass and acrylic glass as photobioreactor (PBR) materials, two different tube diameters, and three different cultivation seasons. In these scenarios, carbon dioxide was modeled as an avoided burden. Additionally, all scenarios were modeled with the burdens resulting from carbon dioxide production. Environmental impacts of selected fish species were obtained from systematic literature research. Life cycle assessment following ISO 14040/44 was used to analyze the global warming potential, acidification, eutrophication, cumulative energy demand, water footprint, and land use. The system boundaries were set from “cradle-to-store,” where the target store is located in Germany. Microalgae biomass as a source of EPA, DHA, and protein was found to have similar or lower environmental impacts than fish fillet from wild capture and aquaculture production when carbon dioxide was modeled as an avoided burden. Microalgae production that included the full burden of carbon dioxide production still caused similar or lower environmental impacts than aquaculture fish. It was found that the distinct microalgae species can significantly influence the results if the comparison is conducted based on nutritional values. Regarding the recommended daily intake of 250–500 mg EPA+DHA, microalgae are an advisable source of nutrients to lessen the environmental pressure on marine ecosystems.Publikationsfonds ML

    Thermoelectric cross-plane properties on p- and n-Ge/SixGe1-x superlattices

    Get PDF
    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/SixGe1-x superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si0.5Ge0.5 superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si0.3Ge0.7 superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period

    Ultra-high critical current densities of superconducting YBa2_2Cu3_3O7δ_{7-\delta} thin films in the overdoped state

    Full text link
    Doping is one of the most relevant paths to tune the functionality of cuprates, it determines carrier density and the overall physical properties of these impressive superconducting materials. We present an oxygen doping study of YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) thin films from underdoped to overdoped state, correlating the measured charge carrier density, nHn_\textrm{H}, the hole doping, pp, and the critical current density, JcJ_\textrm{c}. Our results show a continuous increase of JcJ_\textrm{c} with charge carrier density, reaching 90 MA/cm2^2 at 5 K for pp-doping at the Quantum Critical Point (QCP), linked to an increase of the superconducting condensation energy. The ultra-high JcJ_\textrm{c} achived corresponds to a third of the depairing current, i.e. a value 60 % higher than ever reported in YBCO films. The overdoped regime is characterized by a sudden increase of nHn_\textrm{H}, associated to the reconstruction of the Fermi-surface at the QCP. Overdoping YBCO opens a promising route to extend the current carrying capabilities of REBCO coated conductors for applications

    Oblique roughness replication in strained SiGe/Si multilayers

    Get PDF
    The replication of the interface roughness in SiGe/Si multilayers grown on miscut Si(001) substrates has been studied by means of x-ray reflectivity reciprocal space mapping. The interface profiles were found to be highly correlated and the direction of the maximal replication was inclined with respect to the growth direction. This oblique replication is explained by the influence of the inhomogeneous strain distribution around step bunches. The formation of step bunches is described by a kinetic step-flow model based on the work by Tersoff et al. [Phys. Rev. Lett. 75, 2730 (1995)]. We have generalized this model by taking into account local variations of the in-plane strain. The angle of obliqueness deduced from these calculations agrees very well with the experimental findings

    Oblique roughness replication in strained SiGe/Si multilayers

    Get PDF
    The replication of the interface roughness in SiGe/Si multilayers grown on miscut Si(001) substrates has been studied by means of x-ray reflectivity reciprocal space mapping. The interface profiles were found to be highly correlated and the direction of the maximal replication was inclined with respect to the growth direction. This oblique replication is explained by the influence of the inhomogeneous strain distribution around step bunches. The formation of step bunches is described by a kinetic step-flow model based on the work by Tersoff et al. [Phys. Rev. Lett. 75, 2730 (1995)]. We have generalized this model by taking into account local variations of the in-plane strain. The angle of obliqueness deduced from these calculations agrees very well with the experimental findings
    corecore