840 research outputs found

    Fault tolerant quantum computation with very high threshold for loss errors

    Get PDF
    Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.Comment: 4 pages, comments still very welcome. v2 is a reasonable approximation to the published versio

    Decoding Schemes for Foliated Sparse Quantum Error Correcting Codes

    Get PDF
    Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for quantum repeaters and for quantum computation. They represent a general approach to integrating a range of possible quantum error correcting codes into larger fault-tolerant networks. Here we present an efficient heuristic decoding scheme for foliated quantum codes, based on message passing between primal and dual code 'sheets'. We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for building such code states.Comment: 23 pages, 15 figures, accepted for publication in Phys. Rev.

    Population inversion of driven two-level systems in a structureless bath

    Get PDF
    We derive a master equation for a driven double-dot damped by an unstructured phonon bath, and calculate the spectral density. We find that bath mediated photon absorption is important at relatively strong driving, and may even dominate the dynamics, inducing population inversion of the double dot system. This phenomenon is consistent with recent experimental observations.Comment: 4 Pages, Added Reference [30] to Dykman, 1979, available at http://www.pa.msu.edu/people/dykman/pub/Sov.J.LowTemp.Phys_5.pd

    Loops and Strings in a Superconducting Lattice Gauge Simulator

    Get PDF
    We propose an architecture for an analog quantum simulator of electromagnetism in 2+1 dimensions, based on an array of superconducting fluxonium devices. The encoding is in the integer (spin-1 representation of the quantum link model formulation of compact U(1) lattice gauge theory. We show how to engineer Gauss' law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model are provided by nonlocal order parameters from Wilson loops and disorder parameters from 't Hooft strings. We show how to construct such operators in this model and how to measure them nondestructively via dispersive coupling of the fluxonium islands to a microwave cavity mode. Numerical evidence is found for the existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.Comment: 17 pages, 5 figures. Published versio

    Spontaneous Relaxation of a Charge Qubit under Electrical Measurement

    Full text link
    In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of new features are found. The work would in particular highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.Comment: 4 pages, 2 figures; an error in Eq.(8) is correcte

    Fully fault tolerant quantum computation with non-deterministic gates

    Full text link
    In certain approaches to quantum computing the operations between qubits are non-deterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should assumed to be failure prone. In the logical limit of this architecture each component contains only one qubit. Here we derive thresholds for fault tolerant quantum computation under such extreme paradigms. We find that computation is supported for remarkably high failure rates (exceeding 90%) providing that failures are heralded, meanwhile the rate of unknown errors should not exceed 2 in 10^4 operations.Comment: 5 pages, 3 fig
    corecore