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Foliated quantum codes are a resource for fault-tolerant measurement-based quantum error correction for
quantum repeaters and for quantum computation. They represent a general approach to integrating a range of
possible quantum error correcting codes into larger fault-tolerant networks. Here, we present an efficient heuristic
decoding scheme for foliated quantum codes, based on message passing between primal and dual code “sheets.”
We test this decoder on two different families of sparse quantum error correcting code: turbo codes and bicycle
codes, and show reasonably high numerical performance thresholds. We also present a construction schedule for
building such code states.
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I. INTRODUCTION

Quantum information processing (QIP) requires that the
computational process must be performed with high fidelity.
In a noisy environment this will require quantum error cor-
rection (QEC) [1,2]. Depending on the computational model,
this noise manifests in different ways. A conceptually and
technologically important step in the project to build quantum
computers was the observation by Raussendorf et al. [3,4] that
highly entangled cluster states, are universal resource states
with which to perform a quantum computation. In cluster-
state-based computation, the computation is driven forward
by a series of measurements.

Subsequently, Raussendorf et al. [5–8] proposed a method
of fault-tolerant quantum computation utilising cluster states.
In this scheme, a 3D cluster state lattice is constructed, which
can be viewed as a foliation of Kitaev’s surface code [9,10].
Alternating sheets within this foliated structure correspond to
primal or dual surface codes. Measurements on the bulk qubits
generate correlations between corresponding logical qubits on
the boundary of the lattice. In these schemes, errors are par-
tially revealed through parity check operators, which can be
determined from the outcomes of single-qubit measurements.

Raussendorf’s 3D measurement-based computation
scheme has proved important for the practical development
of quantum computers [11–14], due to its high fault-tolerant
computational error thresholds � 1% [10]. Furthermore, the
robustness to erasure errors [15–17] makes these schemes
attractive for various architectures, including optical networks
[18]. This high threshold is a result of the underlying surface
code, which itself has a high computational error threshold
∼10% [9,10,15,16].

Fault-tolerant, measurement-based quantum computation
is achieved, in part, by “braiding” defects within the foliated
cluster, to generate a subgroup of the Clifford group. By virtue
of their topologically protected nature, braiding operations
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can be made extremely robust, and so can be used to distill
magic states. Together, these resources allow for universal
quantum computation [7,8,19].

In an earlier paper, we showed that all Calderbank-Steane-
Shor (CSS) codes can be clusterized using a larger cluster state
resource [20]. These cluster state codes can be foliated as a
generalization of Raussendorf’s 3D lattice [20]. In that work
we also demonstrated the performance of a turbo code with a
heuristic decoder that we have developed.

In this paper, we present a detailed description of the
decoding algorithm, and we apply the decoder to two classes
of foliated CSS codes: serial turbo codes [21–24], and bicycle
codes. In contrast to the surface code, these code families have
finite rate. This allows for a much lower overhead of physical
qubits to encoded qubits as the size of the code is increased, as
compared to surface codes. In both cases, the decoder on the
complete foliated cluster state uses a soft-input–soft-output
(SISO) decoder within each sheet of the code as a subroutine,
followed by an exchange of marginal information between
neighboring primal and dual code sheets. Iterating these steps
yields an error pattern consistent with the error syndrome.

We present Monte Carlo simulations of the error-correcting
performance using this decoder, assuming independently dis-
tributed Pauli X and Z errors. We analyze the code per-
formance in terms of both the Bit Error Rate (BER) and
Word Error Rate (WER). Our numerical results, simulating
uncorrelated Pauli noise errors, indicate that the codes exhibit
reasonably high (pseudo-)thresholds in the order of a few
percent.

In Sec. II, we review the clusterization of CSS codes.
Section III reviews the foliation of clusterized codes and
presents a general decoding approach. In Sec. IV, we re-
view the construction of decoding trellises for convolutional
codes, which are a resource for the convolutional decoding.
In Sec. V, we develop decoding trellises for clusterized con-
volutional codes within a larger foliated code. In Sec. VI,
we present a decoding algorithm for foliated convolutional
codes. This is a subroutine for the foliated turbo decoder.
In Sec. VII, we present the decoding scheme for foliated
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FIG. 1. Examples of progenitor clusters for clusterized CSS
codes. (a) Clusterized Steane code. (b) Clusterized Shor code. (c)
Clusterized surface code. Code qubits (blue circles) are connected by
cluster bonds (black lines) to ancilla qubits (red squares). An X-basis
measurement of ancilla ak projects neighboring code qubits onto an
eigenstate of ⊗Nak

Z ∈ SZ .

turbo codes and display our numerical results of simulated
trials. Section VIII presents a decoding algorithm for foliated
bicycle codes, and presents numerical results. In Sec. IX,
we analyze the construction of clusterized convolutional and
turbo codes from an architectural viewpoint. We investigate
fault-tolerant constructions of foliated turbo codes.

II. CLUSTERIZED CODES

We begin by reiterating some definitions, in order to set
notation for what follows. A cluster state is defined on a
collection of qubits located at the vertices of a graph [3,4,25].
A qubit at vertex v carries with it an associated cluster
stabilizer Kv = Xv (⊗Nv

Z) ≡ XvZNv
, acting on it and its

neighbors, Nv . The cluster state is the +1 eigenstate of the
stabilizers Kv . For example, in Fig. 1(a), there is a cluster
stabilizer Xa1Zc1Zc2Zc6Zc7 associated to the ancilla qubit a1.
Operationally, such a state can be produced with single and
two qubit gates: each qubit is prepared in a +1 eigenstate of
X, and then C-PHASE gates are applied to pairs of qubits that
share an edge in the graph, e.g., in Fig. 1(a), between qubit c2

and its graph neighbors a1 and a2.
A stabilizer quantum code is defined by the code stabi-

lizers, S, which are a set of mutually commuting Hermitian
operators, whose simultaneous +1 eigenstates define valid
code states. A CSS code is one for which the generators
for S can be partitioned into a set of generators for X-like
stabilizers, SX, which are products of Pauli X operators acting
on subsets of the code qubits, and a set of generators for Z-like
stabilizers, SZ , which are products of Pauli Z operators, i.e.,
S = 〈SX ∪ SZ〉.

An [[n, k, d]] CSS code can be generated from a larger
progenitor cluster state [20]. The progenitor cluster is the
cluster state associated with the Tanner graph of SZ [26], i.e.,
a bipartite graph G = (V,E) whose vertices V are labeled
as code qubits c, or ancilla qubits a. Each ancilla qubit a is
associated to a stabilizer ZNa

∈ SZ , so that |V | = n + |SZ|. E
contains the graph edge (c, a) if [HZ]c,a = 1, where HZ is the
parity check matrix. The logical X codestate of the CSS codes
is obtained by measuring the ancilla qubits of the progenitor
cluster state in the X basis [20].

Examples of clusterized CSS codes are shown in Fig. 1.
These are the Steane 7 qubit code, 9 qubit Shor code, and a 13

qubit surface code with Z stabilizers generated by

SSteane
Z = {

Zc1Zc2Zc6Zc7 , Zc2Zc3Zc4Zc7 , Zc4Zc5Zc6Zc7

}
,

SShor
Z =

{
Zc1Zc2 , Zc2Zc3 , Zc4Zc5 ,

Zc5Zc6 , Zc7Zc8 , Zc8Zc9

}
, (1)

SSurf.
Z =

{
Zc1Zc4Zc6 , Zc2Zc4Zc5Zc7 , Zc3Zc5Zc8 ,

Zc6Zc9Zc11 , Zc7Zc9Zc10Zc12 , Zc8Zc10Zc13

}
.

For each of the Z-like stabilizers of a code, an ancillary
qubit (red squares) is built into a cluster fragment with the
associated code qubits (blue circles) in the stabilizer. For
instance, in the figure, each ancillary qubit, ai , is associated
with the ith stabilizer element of SZ . This construction holds
for all CSS codes [20].

CSS codes detect X and Z errors independently. Each error
type may be corrected independently, although this disregards
potentially useful correlations, if such exist. We will assume
independent X and Z Pauli noise, and in what follows, we
describe the process for detecting and correcting Z errors
using SX syndrome information. The dual problem, using SZ

syndrome information to correct X errors proceeds in exact
analogy.

We note that for every CSS code, there is a dual CSS
code. The dual code is generated by exchanging X and Z

operators in the stabilizers and logical operators. That is, an
X-like stabilizer in the primal code transforms to a Z-like
stabilizer in the dual code, and vice versa. Following the
prescription above, a dual CSS code also has a progenitor
cluster state, i.e., the dual code can also be clusterized in the
same way. If the code is self-dual (e.g., the Steane code), then
the corresponding primal and dual cluster states are identical.

III. FOLIATED CODES

In this section, we review the general construction of foli-
ated codes as an extension of Raussendorf’s 3D cluster state
construction [5–8,20]. Section III A covers the generation of
foliated codes from the cluster state resources in Sec. II and
Sec. III B outlines a heuristic decoding approach which is
suitable for general CSS codes. Specific implementations for
convolutional, turbo and bicycle codes, which are all examples
of low-density parity check (LDPC) codes, are covered in later
sections.

A. Foliated code construction

The general foliated construction consists of alternating
sheets of primal and dual clusterized codes as defined in
Sec. II, which are “stacked” together [20]. The stacking of
code sheets simply amounts to the introduction of additional
cluster bonds (i.e., C-PHASE gates) between corresponding
code qubits on neighboring sheets. This is depicted in Fig. 2
for a specific code example [the Steane code of Fig. 1(a)].

Suppose a CSS code has an X-like stabilizer, ŝ, with
support on code qubits chj

, indicated by the support vector
	h = {h1, h2, ...}, i.e., ŝ = Xch1

⊗ Xch2
... ≡ Xc	h . In the foliated

construction, there is a corresponding parity check operator
centered on sheet m, given by

P̂c	h,m
≡ Xa	h,m−1

Xc	h,m
Xa	h,m+1

, (2)
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FIG. 2. A foliated Steane code with L = 3 sheets. Code qubits
(blue circles) share C-PHASE cluster bonds (thick lines) with ancilla
qubits (red squares) in the same sheet, and with code qubits in
adjacent sheets (green streaked lines). The Steane code is self-dual,
so that primal and dual cluster sheets are identical. In this example,
the end faces are indexed by m = 1 and m = L = 3. Bulk qubits
include all qubits in the m = 2 sheet, and the ancialla qubits in the
end faces. The product of cluster stabilizers centered on the labeled
qubits (connected by dashed red lines) produces the parity check
operator P̂1,m=2 in Eq. (3).

where a	h,m±1 is the ancilla qubit associated with the dual code
stabilizer Zc	h,m±1

acting on sheet m ± 1.
Given that each code sheet is derived from an underlying

CSS code with logical operators XL and ZL, we can define
corresponding logical operators within each code sheet, XL,m

and ZL,m. After the code is foliated, the logical operators in
each code sheet commute with the parity check operators [20],
i.e., [P̂c	h,m

, ZL,m] = 0.
A reason for considering this construction is the observa-

tion that the foliated code cluster state provides a resource for
error tolerant entanglement sharing. This generalizes one of
the major insights of Raussendorf et al. [5], in which is was
shown that after foliating L surface code sheets, the resulting
three-dimensional cluster state (defined on a cubic lattice)
served as a resource for fault tolerancy creating an entangled
Bell pair of surface code logical qubits between the first
and last sheet (labelled by the index m = 1 and L). Starting
from the three-dimensional foliated surface code cluster, this
long-range entanglement is generated by measuring each of
the bulk physical qubits (i.e., all ancilla qubits, and all code
qubits in sheets m = 2 to L − 1) in the X basis. Formally, this
is shown by noting that after the bulk qubit measurements,
the remaining physical qubits (which are confined to sheets
1 and L) are stabilized by the operators XL,1 ⊗ XL,L and
ZL,1 ⊗ ZL,L [5], up to Pauli frame corrections that depend on
the specific measurement outcomes on the bulk qubits. The
underlying surface code makes the protocol described therein
robust against Pauli errors on the bulk qubits.

As discussed in Ref. [20], this property is respected for any
foliated CSS code. That is, measurements on the bulk qubits
project the logical qubits encoded within the end sheets into
an entangled logical state. This is verified by checking that
XL,1 ⊗ XL,L and ZL,1 ⊗ ZL,L are in the stabilizer group of
the cluster state after bulk measurements are completed.

For an underlying [[n, k, d]] code, there are weight-d un-
detectable error chains on the foliated cluster, as in Refs. [5–
8,10]. Since the structure of the code in the direction of

foliation is a simple repetition, it follows that the foliated
cluster inherits the distance of the underlying code.

Figure 2 shows an example of the cluster state for a foliated
Steane code. Alternating sheets of the primal Steane code
cluster state [shown in Fig. 1(a)] and its self-dual are stacked
together, with additional cluster bonds (green streaked lines)
extending between corresponding code qubits in each sheet;
operationally, these correspond to C-PHASE gates between
code qubits. The Steane code is self-dual, so primal and dual
sheets are identical.

An example of a parity check operator centered on sheet
m = 2 is

P̂1,m=2 = Xa1,1Xc1,2Xc2,2Xc6,2Xc7,2.Xa1,3, (3)

which is depicted in Fig. 2. For this example, there are
two other parity check operators centered on sheet m = 2,
associated to the other ancilla qubits therein. The logical
operators for the Steane code pictured in Fig. 1 a are ZSteane

L =
Zc1Zc2Zc3 and XSteane

L = Xc1Xc2Xc3 . By inspection, the parity
check operator P̂1,m commutes with ZSteane

L,m on sheet m.
Figure 2 also illustrates a minimal example of entangle-

ment sharing between the end sheets of the foliated construc-
tion, for L = 3 code sheets. After the foliated cluster state
is formed, X measurements on the bulk qubits (all qubits
in the dual sheet shown, and the ancilla qubits in the end
primal sheets) leave the remaining physical qubits (the code
qubits in the primal end sheets) stabilized by the operators
XSteane

L,1 ⊗ XSteane
L,3 and ZSteane

L,1 ⊗ ZSteane
L,3 . Additional examples

of the Shor code and surface code are presented in Ref. [20].

B. Decoding approach

Errors in the foliated cluster are detected by parity check
operators: a Z error will flip one or more parity checks,
giving a nontrivial error syndrome for the foliated cluster.
Importantly, the parity check measurement outcomes can be
inferred from products of single-qubit X measurement out-
comes. The syndrome information then becomes input into a
decoder.

While generic CSS codes may not be efficiently decoded,
many exact or heuristic decoders are known for specific code
constructions [10,17,23,27]. For the purpose of this paper, we
assume that whichever code is chosen, a practically useful
decoder is known. In what follows, this decoder forms a
subroutine that is called repeatedly in the decoding of the
larger, foliated code.

We note here that this is qualitatively different from the
foliated surface code [4,10], for which the decoder does not
call the surface code decoder as a subroutine. Instead, the
surface code decoders are generalized to the foliated version.
For instance, the minimum weight perfect matching decoder
for the surface code can be modified to the foliated case [5,10],
by replacing stabilizer defects in the 2D Kitaev lattice [9],
with parity check defects in the 3D Raussendorf lattice [4,10],
but still using perfect matching on the syndrome. However,
this is a peculiarity of the Raussendorf construction as a graph
product code [28], constructed from repeated graph products
of a repetition code.

Here, we propose a general purpose, a heuristic method of
decoding foliated codes, which is based upon the decoding of
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FIG. 3. A schematic flow of beliefs (i.e., marginal probabilities) in the heuristic decoder for a generic foliated cluster code. Code qubits
are shown as circles, ancilla qubits as rectangles within each code sheet. Cluster bonds are shown as black (green) lines within (between) code
sheets (as in Fig. 2). The decoding sheet consists of code qubits c ,m in sheet m, and the ancilla in the adjacent sheets, a ,m±1. At the left,
one stabilizer, Sj,m, with support on code qubits cj1,...4,m in sheet m is shown (shaded), and forms a parity check operator with the associated
ancilla qubits aj,m±1 (connected by dashed red lines). Step 1: on each decoding sheet m, the soft-input–soft-output (SISO) decoder receives
syndrome data 	Sm and input error marginals Pm(c , m) on the code qubits (thick purple arrows) and adjacent ancilla qubits Pm±1(a , m) (thin
orange arrows) to compute updated error marginals P ′

m for code and ancilla qubits. This step can be processed in parallel across all sheets,
since there are no cross-dependencies. Note that after step 1 there are two marginals associated to each adjacent ancilla: e.g., P ′

m(aj,m+1)
(solid orange arrow emerging from the decoder) and P ′

m+2(aj,m+1) (dotted orange arrow emerging from the decoder), which are computed
from decoders on sheets m and m + 2, respectively. If these disagree, P ′

m(aj,m+1) �= P ′
m+2(aj,m+1), the values are exchanged in step 2. After

marginal exchange, the process is iterated (step 3), until marginals converge. After marginals on the ancilla have converged sufficiently,
maximum likelihood decoding is performed within each code sheet (step 4, not shown).

the underlying CSS codes in the presence of faulty syndrome
extraction. If the decoder for the underlying code is efficient
then it will be efficient for the full foliated process. The
foliated decoding algorithm is a heuristic method based on
belief propagation (BP) that may work well in many cases
[22,29]. The overall foliated decoder calls a soft-input–soft-
output1 (SISO) decoder for each of the underlying primal
and dual CSS codes, as a subroutine. The SISO decoder
calculates the probability of a Pauli error, σ , on qubit q ∈
{ak, cj }, P (σq | 	SCSS), given a physical error model and syn-
drome data for the CSS code, 	SCSS, which may itself be

1“Soft” values indicate that the decoder accepts and returns prob-
abilities for errors, as opposed to “hard” values, which are binary
allocations (“error” OR “no error”) at each qubit. For example,
perfect matching on the surface code is a hard decoder.

unreliable, due to errors on the ancilla qubits. Using such a
decoder it is possible to assign a probability of failure to a
parity check to account for errors on ancilla qubits, P (σa ) =∑

	SCSS
P (σa| 	SCSS)P (	SCSS).

For the foliated case, consider a parity check operator given
by Eq. (2). A nontrivial syndrome can arise because of errors
on code qubits 	h within code sheet m, or due to errors on
the corresponding ancilla qubits a	h in adjacent dual sheets
m ± 1.

In the case where dual-sheet ancilla qubits are error-free,
the decoding problem reduces to a series of independent CSS
decoders using perfect syndrome extraction. However, errors
on the ancillas mean that the in-sheet syndrome is unreliable.
To account for the dual-sheet ancilla errors, we embed the
CSS decoder in a belief propagation (BP) routine, as iterated
in the following scheme. Steps 1, 2, and 3 and illustrated in
Fig. 3.
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(0) A decoding sheet centered on sheet m is defined by
a set of qubits q, which contain the code qubits cj,m within
the sheet and the ancilla qubits ak,m±1 on neighboring sheets.
The input to the decoder is the syndrome data 	Sm on sheet
m, and a prior probability distribution, P

pr
m (ak,m±1), for the

marginals on the ancilla qubits associated to the decoding
sheet m.

(1) The SISO decoder on sheet m computes marginal
error probabilities for the code qubits in the sheet, P ′

m(cj,m),
assuming marginals on the ancilla in sheet m ± 1, and updated
marginals on the ancilla qubits P ′

m(ak,m). This step can be
parallelized across all sheets.

(2) The assumed error model for ancilla qubits is updated
using the results from step 1. Pm(ak,m±1) → P ′

m(ak,m±1) =
Pm±2(ak,m±1|Sm±2), where Pm±2(ak,m±1) is the probability
distribution found from a neighboring decoding process. We
refer to this update rule as an exchange of marginals.

(3) Using the updated ancilla marginals from step 2, we
iterate back to step 1 until ancilla marginals converge suf-
ficiently, i.e., Pm(ak,m±1) ≈ P ′

m(ak,m±1), in which case we
proceed to step 4.

(4) Use the converged marginals computed on the code
and ancilla qubits, Pm(cj,m) and Pm(ak,m±1), to calculate an
error correction chain (parametrized by error correction binary
support vector, 	e) with (approximately) maximum likelihood

Pm(	e| 	Sm, Pm(cj,m), Pm(ak,m±1)), within each code sheet. This
could employ a hard decoder.

In Secs. IV–VIII, we describe specific soft decoding im-
plementations for foliated convolutional, turbo, and LDPC
bicycle codes. For convolutional and turbo codes, we first
introduce a trellis decoding framework, which is then adapted
for use as a single-layer decoder. This is then combined with
the BP process above to generate a full decoding scheme.
For bicycle codes, we use belief propagation directly on the
Tanner graph representation of the foliated code.

IV. CONVOLUTIONAL TRELLIS CONSTRUCTION

In this section, we review the construction of trellises as a
tool for SISO decoding of convolutional codes [22,23,30,31].
Section V modifies this construction for use with single sheets
of the foliated code, which is itself a subroutine in the full
decoding of foliated convolutional codes.

Generators and stabilizers of convolutional codes are trans-
lations of some “seed” generators or stabilizers, which act
over a sequence of frames. Each frame labels a contiguous
block of n qubits. We assume here that the code has τ frames,
labeled by a frame index, t = 1, . . . , τ . For a classical rate k

n

code, the generator matrix (for logical Z operators) has the
form

frame: . . . t−1 t t+1 t+2 . . .

GT =
⎡
⎣. . . G(1) G(2) . . . G(νg) . . .

. . . G(1) G(2) . . . G(νg) . . .

. . . G(1) G(2) . . . G(νg) . . .

⎤
⎦

kτ×nτ

, (4)

where G(i) are binary-valued k × n submatrices. We use the
notation AT to denote the transpose of the matrix A; bold
face matrices indicate generators acting on the entire set of
physical qubits. All other elements in G are zero. Each G(i)

acts on a single frame of n physical bits, encoding k logical
bits. The code is built from translations of the submatrices
[G(1), . . . ,G(νg )]. Each component, G(j ), acts on a single
frame of the code. The value of νg is the codeword memory
length, which counts the number of frames over which parity
check operators have support.

Later, we will discuss a specific example of a convolutional
code that illustrates this construction. For concreteness, we
preempt that example by reference to Fig. 7(a), each row of
which depicts a convolutional code with frames consisting of
n = 3 qubits (blue circles), and with parity check operators
(red squares) extending over νg = 3 frames. Note that in this
example, each parity check operator has support on 6 of
the qubits (indicated by thick black lines) within the νg = 3
contiguous frames.

Similarly, we define the parity check generator matrix

H =
⎡
⎣. . . H (1) . . . H (νh ) . . .

. . . H (1) . . . H (νh ) . . .

. . . H (1) . . . H (νh ) . . .

⎤
⎦

nzτ×nτ

,

(5)

where nz = |SZ|/τ is the number of Z-like stabilizers per
frame. The value of νh is the parity check memory length.
Typically, νh and νg are of similar size.

Codeword generators are expressed in the form ĝ = Z⊗	g ,
where 	g ∈ Znτ

2 is in the row space of GZ . We have introduced
the notation Z⊗	v = Z

v1
1 ⊗ Z

v2
2 . . . with vj ∈ Z2. Similarly, the

stabilizer generators formed from HZ are ĥ = Z⊗	h, where 	h ∈
Znτ

2 is in the row space of HZ .
The commutation relationships between generator and

stabilizer matrices manifest as orthogonality conditions, i.e.,⎡
⎣ GT

Z

HZ

ISFZ

⎤
⎦[

GX ISFT
X HT

X

] = Inτ×nτ , (6)

where we have introduced the inverse syndrome formers
(ISFs). The ISF is useful determining an initial, valid decoding
pattern, known as a pure error. Each row of ISFZ corre-
sponds to an operator that commutes with all X-like stabilizer
generators, ĝ ∈ RowSpace(GX ), and with all but one of the
parity check generators ∈ RowSpace(HT

X ); there are as many
ISF generators as there are parity check generators. The rows
of GT

Z and HZ form an orthonormal set, but do not fully
span Znτ

2 . The ISFZ submatrix can be computed by finding
an orthonormal completion of the rowspace of GT

Z and HZ ,
e.g., using Gram-Schmidt. The matrix ISFZ is not unique:
any orthogonal completion of the basis that satisfies ISFZ ·
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HT
X = I will suffice.2 Similarly, ISFT

X is generated from an
orthonormal completion of the column space of GX and HT

X.
Suppose some (unknown) pattern 	ε ∈ Znτ

2 of Z errors gives
rise to a syndrome that is revealed by the X-like parity checks,
i.e., 	S = HX	ε ∈ Znxτ

2 . We use ISFZ to generate a pure error,

Ê0 = Z⊗	e 0 ≡ Z⊗(ISFT
Z · 	S ), based only on the syndrome data.

The binary-valued support vector 	e 0 ∈ Znτ
2 corresponds to a

possible error correction pattern that satisfies the syndrome 	S,
i.e., 	S = HX	ε = HX	e 0. Therefore Ê0 is a valid decoding pat-
tern, but it is unlikely to be the most probable decoding, and
so is unlikely to robustly correct the original error. However,
it defines a reference decoding from which the set of all valid
decodings, E , can be enumerated through

E = {Ê0ĥĝ|ĥ ∈ SZ, ĝ is a code word},
= {

Z⊗(	e 0+	h+	g)
∣∣	h ∈ RowSpace(HZ ),

	g ∈ RowSpace
(
GT

Z

)}
, (7)

where we take linear combinations of rows of HZ and GT
Z over

Z2. In what follows, we suppress the subscripts X and Z.
A valid decoding of the syndrome data may be

written as Ê0Z⊗ 	p, where 	p ≡ 	h + 	g ∈ RowSpace(H) ∪
RowSpace(GT ) ⊂ Zτn

2 . That is, we define

	p =
k∑

i=1

τ∑
j=1

l
(g)
i,j GT

i+j +
nz∑

i=1

τ∑
j=1

l
(h)
i,j Hi+j , (8)

where Ai refers to the i th row of A.
Relative to the (easily found) pure error support vector, 	e 0,

the vector 	p parametrizes all possible valid decoding through
the coefficients l

(g)
i,j and l

(g)
i,j . A good decoder will return

optimal values of l
(g)
i,j and l

(h)
i,j , corresponding to an element,

Ê = Z 	p+	e 0 ∈ E , that has a high likelihood of correcting the
original error. For low error rates, this amounts finding a 	p
that minimizes the Hamming weight of 	p + 	e 0. For readers
unfamiliar with this general construction, we provide a short
example based on the seven-qubit Steane code in Appendix A.

A. Seed generators of convolutional codes

Finding an optimal 	p by enumerating over all 2(k+nz )τ pos-
sible binary values of l

(g)
i,j and l

(h)
i,j becomes computationally

intractable as the size of the code is increased. However, the
repeated structure of convolutional codes, in blocks of length
νn, allows for a simplification, using a decoding trellis. The
trellis decoder reduces the search space to ∼2kνg+nzνhτ , so that
the decoding is linear in the code size τ , albeit with potentially
large prefactor depending on the total memory lengths νg and
νh.

As the number of encoded bits increases, the size of the
generator matrix increases. We therefore use a more compact
representation using transfer functions, which are polynomi-
als in the delay operator, denoted by D. We interpret D as
a discrete generator of frame shifts, so that Dq represents a
“delay” of q frames. We also define the inverse shift generator,

2That is, ISFT
Z is a pseudoinverse of HX , and vice versa.

D̃, which acts like a reverse translation such that DaD̃b = δab.
Details of the construction are given in Appendix B.

Using this delay notation, we define the seed matrix of a
rate k

n
convolutional code in terms of the submatrices G(i), in

Eq. (4),

GT(D) ≡ G(1) + DG(2) + · · · + Dνg−1G(νg ),

≡

⎡
⎢⎣

g11(D) g12(D) . . . g1n(D)
...

...
gk1(D) gk2(D) . . . gkn(D)

⎤
⎥⎦

k×n

, (9)

where gij (D) is a polynomial in D, defined by

gij (D) =
νg∑

q=1

Dq−1G
(q )
ij . (10)

The utility of the delay operator notation is that (1) it enables
us to write GT(D) in terms of a matrix that is independent
of the number of frames τ and (2) it sets the degree of the
polynomial entries.

Similarly,

H (D) ≡ H (1) + DH (2) + · · · + Dνh−1H (νh ),

≡

⎡
⎢⎣

h11(D) h12(D) . . . h1n(D)
...

...
hz1(D) hz2(D) . . . hzn(D)

⎤
⎥⎦

nz×n

,

where hij (D) =
νh∑

q=1
Dq−1H

(q )
ij .

In this delay notation, Eq. (6) becomes

Du

⎡
⎣ GT

Z (D)
HZ (D)

ISFZ (D)

⎤
⎦[

GX(D̃) ISFT
X(D̃) H T

X (D̃)
]
D̃v

= In×nδuv. (11)

Since convolutional codes are partitioned into frames, we
write 	p = ( 	p1, 	p2, . . . , 	pt , . . . , 	pτ ), where 	pj ∈ Zn

2. From
Eq. (8), we have 	p = ∑τ

i 	ptD
i−1, and

	pt =
k∑

i=1

νg+1∑
j=1

l
(g)
i,t−j+1G

T
i (D)D̃j−1

+
nz∑

i=1

νh+1∑
j=1

l
(h)
i,t−j+1Hi (D)D̃j−1,

≡Up(αt , 	lt ), (12)

where 	lt ≡ {	l(g)
t ; 	l(h)

t } ≡ {l(g)
1,t , . . . , l

(g)
k,t ; l(h)

1,t , . . . , l
(h)
nz,t } and

αt ≡ {	l(g)
t−1,

	l(g)
t−2, . . . ,

	l(g)
t−νg

; 	l(h)
t−1,

	l(h)
t−2, . . . ,

	l(h)
t−νh

}
. (13)

The memory state αt is a list of length νg + νh that records
values of 	lq for q = t − νg,h + 1 up to q = t − 1. It becomes
useful when we discuss a SISO decoder in Sec. VI, which
optimizes the choice of l’s.

The purpose of these manipulations is that 	pt depends only
on prior 	lt ’s going back a number of frames depending on the
memory length νg,h. Importantly, it does not grow with τ , so
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l
(g)
t−1 =1

pt

l
(g)
t =0

l
(h)
t−2 =1

0

0

0

αt

1

1

1

l
(h)
t−1 =0l

(h)
t =1

Memory

FIG. 4. A schematic circuit for computing 	pt in Eq. (12) for a
single frame, t , based on the k

n
= 1

3 convolutional code defined in

Eq. (14). The circuit receives values of 	lt for frame t , and returns
a 	pt , which depends on the recent history of 	l, which is stored in
memory elements (black boxes). For an input of 	lt = {0; 1} and a
memory state αt = {1; 01}, the circuit would return pt = (111).

that the search space for optimising over l’s does not grow
exponentially with the size of the code.

From Eq. (13), it is simple to see that the memory state αt+1

depends on 	lt , and components of αt . As a result, there are
consistency conditions that relate αt+1 to αt . These conditions
are represented by a trellis, which depicts all valid transitions
from αt to αt+1.

We now illustrate this construction for the example of a
k
n

= 1
3 convolutional code. Figure 4 shows a (classical) circuit

diagram relating 	pt to 	lt , for the self-dual rate convolutional
code defined by

GT
Z (D) = [ D D 1],

HZ (D) = [1 + D + D2 1 + D2 1],
ISFZ (D) = [ D D 0].

(14)

Reading off the highest powers of D in GT
Z (D) and HZ (D),

respectively, we see that νg = 1 and νh = 2, so that the
memory state αt = {l(g)

t−1; l(h)
t−1, l

(h)
t−2} is a list with three entries.

In the equivalent circuit depicted in Fig. 4, the memory is
represented by black boxes.

Figure 5 illustrates allowed transitions from state αt =
{1; 01} to a new state αt+1 at frame t for the convolutional
code defined in Eq. (14). Given that this code example is suffi-
ciently simple, we show all possible choices for 	lt for this tran-
sition, i.e., 	lt = {0; 0}, 	lt = {0; 1}, 	lt = {1; 0}, and 	lt = {1; 1}.
We also show the corresponding codeword block frame 	pt ,
respectively, (000), (111), (001), and (110) for each possible
choice of 	lt . Expanding Fig. 5 over several frames yields the
trellis, shown in Fig. 6.

With the foregoing machinery in place, error correction
works as follows. A set of errors, 	ε, produces a syndrome
	S. From 	S, we use the ISF to calculate 	e 0. Any path,
	p = ( 	p1, 	p2, . . . , 	pt , . . . , 	pτ ), through the trellis that begins
in the trivial state 	p1 = (0 . . . 0; 0 . . . 0) and ends in the state

Frame t

Memory states

{0; 00}

{1; 10}
{1; 01}

{0; 00}

{1; 10}

αt+1 =

{1; 00}
{0; 11}
{0; 10}

αt =

{1; 01}
{1; 00}
{0; 11}
{0; 10}

{l(g)
t−1; l

(h)
t−1, l

(h)
t−2} {l(g)

t ; l
(h)
t , l

(h)
t−1}

t + 1

{1; 11}{1; 11}

{0; 01}{0; 01}

lt = {0, 1}
pt = (111)

lt = {0, 0}
pt = (000)

lt = {1, 0}
pt = (001)

lt = {1, 1}
pt = (110)

FIG. 5. The structure of transitions between memory states cor-
responding to the example illustrated in Fig. 4 using the convolu-
tional code defined in Eq. (14). The recovery operation is determined
by 	pt = Up (at , 	lt ) = {111}. Enumerating over all possible logical
inputs 	lt , starting memory states at , and frames t , a complete trellis
is constructed, shown in Fig. 6.

	pτ = (0 . . . 0; 0 . . . 0) state corresponds to a valid decoding.
The path 	pmin that minimizes the Hamming weight of 	pmin +
	e 0 is the most likely decoding solution. If no detectable errors
occur so that 	e 0 is trivial (i.e., if 	e 0 = {00 . . . }), then the
lowest weight path through the trellis has 	pmin = (000 . . . ),

{0; 00}

{0; 01}

{0; 10}

{0; 11}

{1; 00}

{1; 01}

{1; 10}

{1; 11}
α =

t + 1 t + 2

pt = Up(α, l) pt+1 pt+2

{0;0}

(110)
(001)
(111)
(000)

(110)
(001)
(111)
(000)

(010)
(101)
(011)
(100)

(010)
(101)
(011)
(100)

(000)
(111)
(001)
(110)

(000)
(111)
(001)
(110)

(100)
(011)
(101)
(010)

(100)
(011)
(101)
(010)

(000)
(111)
(001)
(110)

(100)
(011)
(101)
(010)

(110)
(001)
(111)
(000)

(010)
(101)
(011)
(100)

(110)
(001)
(111)
(000)

{l(g); l(h)}

{0;1}
{1;0}
{1;1}

Frame t Memory

FIG. 6. The decoding trellis for the convolutional code in
Eq. (14). Each transition corresponds to a different product of ĝ

and ĥ at a given time step. The memory state records the values of
previous transitions. Each path corresponds to a certain product of ĝ

and ĥ terms. The blue and red paths are the most likely paths for the
syndromes in Eqs. (15) and (16), respectively.
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and wt(	e 0 + 	pmin) = 0. For nontrivial 	e 0, finding this path is
the core of the decoding problem.

Given a trellis, such as in Fig. 6, and priors for the qubit
error marginals, a trellis decoding algorithm will return a
suitable choice for 	pmin. Several algorithms exist to iden-
tify (optimally or suboptimally) the most likely trellis path.
These include the Viterbi algorithm [32] the Bahl, Cocke,
Jelinek, Raviv (BCJR) algorithm [33], and the Benedetto
algorithm [34].

The last of these algorithms is a maximum a posteriori
(MAP) SISO decoder, which is capable of dealing with paral-
lel transitions, i.e., those for which several transitions between
states αt and αt+1 exist. Single-layer foliated codes necessar-
ily have parallel transitions in their trellis descriptions, as will
be shown in Sec. V. For this reason, we will use the Benedetto
algorithm as a SISO decoder for convolutional codes. This is
discussed in detail in Sec. VI.

1. Examples

Before concluding this section, we give two illustrative ex-
amples using the trellis shown in Fig. 6. Because the examples
are sufficiently simple, we find the lowest weight path through
the trellis by inspection. In practice, we use a modified version
of Benedetto’s trellis algorithm [34] to determine the most
likely path through the trellis (see Sec. VI).

In the first example, the error pattern, 	ε, is a single error
occurring on the first bit in frame t + 1, as indicated in the
following equation:

frame: . . . t − 2 t − 1 t t + 1 t + 2 . . .

	ε = . . . 000 000 000 100 000 . . .
	S = . . . 0 1 1 1 0 . . .

	e 0 = . . . 000 000 110 110 110 . . .

	pB = . . . 000 000 110 010 110 . . .

	emin = 	e 0 + 	pB

= . . . 000 000 000 100 000 . . . .

,

(15)

Given 	ε, we find 	S and 	e 0, also shown in Eq. (15) (for this
and the following example, we work through the calculation
of 	S and 	e 0 from 	ε in Appendix D). Using 	e 0, we find
(by inspection for this example) the path 	pB through the
trellis that minimizes wt(	e 0 + 	pB ) ≡ wt(	emin) = 1. This path
is shown in blue in Fig. 6; the blue highlighted triples of
binary values in the figure correspond, frame by frame, to the
triples in 	pB . This path determines the optimal error correction
procedure, which is to apply the correction operator Z⊗	emin . In
this example, 	emin = 	ε, so the error correction would succeed
since 	emin and 	ε are logically equivalent, i.e., the correction
	emin would return the system to the correct codeword.

In the second example, the error pattern, 	ε, consists of two
errors occurring on the first and second qubits in frame t + 1.
The most likely path through the trellis 	pR is shown in red in

Fig. 6. We have

frame: . . . t − 2 t − 1 t t + 1 t + 2 . . .

	ε = . . . 000 000 000 110 000 . . .
	S = . . . 0 0 1 0 0 . . .

	e 0 = . . . 000 000 000 110 000 . . .

	pR = . . . 000 000 001 110 000 . . .

	emin = 	e 0 + 	pR

= . . . 000 000 001 000 000 . . . .

.

(16)

Again, the red highlighted triples of binary values in Fig. 6
correspond, frame-by-frame, to the triples in 	pR in Eq. (16).
The lowest weight recovery operation is a single error on
the third qubit in frame t . In this example, the product
of the recovery operation and physical errors is 	emin + 	ε =
. . . 001 110 . . . , which is a nontrivial codeword of GT

Z in
Eq. (14), that is, the decoder fails in this example.

This second example is illustrative: because this is
d = 3 code, adjacent errors are not expected to be corrected.
However, if errors are sufficiently far apart (determined by
the code memory length), then they behave as if they were
independent, and so the convolutional code can decode many
more errors than d/2 if they are sparsely distributed.

V. FOLIATED CONVOLUTIONAL DECODING

In this section, we build on the trellis construction in
Sec. IV to operate on independent sheets of a foliated convo-
lutional code, accounting for additional ancilla. Decoding can
be performed using the algorithm in Sec. VI. This represents
a subroutine in the full foliated decoding algorithm which
exchanges marginals between sheets. This is reviewed in
Sec. V B.

A. Trellises for single decoding sheets

Consider a foliated code based on a rate r = k/n CSS
convolutional code with nz = |SZ|/τ Z-like stabilizers and
nx = |SX|/τ X-like stabilizers per frame, so that there are n =
k + nx + nz physical qubits per frame. Foliated parity check
operators are defined in Eq. (2). Figure 7(a) shows an example
of a foliated rate 1/3 convolutional code, and a specific parity
check operator, P̂ = Xa1Xc1 . . . Xc6Xa2 , is indicated by the
labeled vertices a1, c1, . . . , c6 and a2, where the ancilla qubits
are on the adjacent code sheets m ± 1. Measuring all such
operators associated to code sheet m yields the syndrome 	Sm

for that sheet.
For the purposes of decoding, we introduce decoding

sheets. A decoding sheet m is identified with the correspond-
ing code sheet m: it refers to the same code qubits, but
includes virtual ancilla qubits associated to the neighboring
sheets.

The shaded elipse in Fig. 7(b) illustrates the formation
of a single decoding sheet for a foliated convolutional code;
this decoding sheet, m, is identified with the corresponding
code sheet, m, in Fig. 7(a). Independent decoding of each
decoding sheet can be performed by creating a virtual code
associated with a single sheet of the foliated structure. This
code accounts for the ancillary qubits a1 and a2 in adjacent
sheets by introducing virtual ancilla a′′

1 and a′
2. There are 2nx
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a

a'2

a''2

m,

m+1,

m-1,

m-2,

dual

primal

dual

primal
single layer

(b)

m,

m-1, dual

primal

(a)

a1

a''1

m+1, dual

a1

a2

c1 c2 3 c4 c5 c6

FIG. 7. (a) The foliated rate 1
3 convolutional code defined by

Eq. (14). The product of cluster stabilizers centered on the num-
bered qubits generates a parity check operator P̂ = Kc1Kc2 . . . Ka2 =
Xc1Xc2 . . . Xa2 . All other parity check operators are translations of
this seed. (b) The corresponding primal lattice. Dual elements have
been grayed out. Because there is only nx = 1 X-like stablizer per
frame, we introduce 2nx = 2 virtual qubits, labeled a′

i and a′′
i , corre-

sponding to ancilla qubits a1,2 on neighboring sheets. This results in
a rate k

n+2nx
= 1

5 for sheet m of the foliated structure. The marginals
on virtual qubit a′′

1 , computed within sheet m, and virtual qubit a′
1 in

sheet m + 2 (which ultimately refer to the same physical qubit a1)
are exchanged iteratively, so that the foliated decoder converges.

virtual ancilla associated to the ancilla on the adjacent code
sheets, so the virtual code has rate k

n+2nx
.

We note that a physical ancilla qubit aj,m is represented
virtually in two different decoding sheets m ± 1 (as a′

j,m and
a′′

j,m). This yields a consistency condition on ancilla marginals
between neighboring sheets, which we discuss later.

Within a decoding sheet [see Fig. 7(b)], we begin by
finding an initial recovery operation, Ê0, which satisfies a
received syndrome, 	S. As with the previous section this can be
achieved by using ISFs. Setting the final 2nx qubits in a frame
to correspond to virtual ancilla qubits, the seed generator is
given by

G
T
Z (D) = [

GT
Z (D) 0k×nx

0k×nx

]
, (17)

where GT
Z refers to the generator matrix of the base convo-

lutional code, as exemplified in Eq. (14). Similarly, the seed
parity check operators and ISF are given by

P (D) = [
HX(D) Inx×nx

Inx×nx

]
,

ISFZ (D) = [
ISFZ (D) 0nx×nx

0nx×nx

]
,

HZ (D) = [
HZ (D) 0nz×nx

0nz×nx

]
.

Additional pairs of gauge operators are generated from the
degrees of freedom introduced by the extra ancilla qubits.
The seed generators, stabilizers, ISFs, and gauges JZ and JX

satisfy the orthogonality relations

Di

⎡
⎢⎢⎢⎢⎢⎣

G
T
Z (D)

HZ (D)

ISFZ (D)

JZ (D)

⎤
⎥⎥⎥⎥⎥⎦

[
G

T
X(D̃) ISFX(D̃) P (D̃) JX(D̃)

]=Iδi0,

(18)
which implicitly defines JX,Z . A valid choice of JX is

JX =
[

0nx×n Inx×nx
0nx×nx

0nx×n 0nx×nx
Inx×nx

]
, (19)

which orthogonal to GZ, HZ and ISFZ .
Generally, JZ depends on the details of the code. Each

Z⊗	j ∈ JZ is a set of operators which commute with GX, PX,
and ISFX, but anticommute with a single X⊗a ∈ JX.

As an example, foliating the code in Eq. (14), we have

JZ (D) =
[

1 + D 1 1 D 0
0 0 0 1 1

]
. (20)

Because JZ commutes with the stabilizers, they correspond to
undetectable error patterns within the sheet. As an aside, using
the Raussendorf lattice as an example, these would correspond
to error chains that pass through a sheet in the “time”-like
direction of foliation: they leave no syndrome data within
the sheet (but would be detected by other sheets in the 3D
lattice).

The set of valid recovery operations is given by

E = {
Z⊗	e 0+	h+	g+ 	J |	h ∈ RowSpace(HZ ),

	g ∈ RowSpace
(
GT

Z

)
,

	J ∈ RowSpace(JZ )
}
,

where

JZ =
⎡
⎣. . . J (1) . . . J (νj ) . . .

. . . J (1) . . . J (νj ) . . .

. . . J (1) . . . J (νj ) . . .

⎤
⎦

2τ×nτ

,

(21)

by analogy with Eq. (4). In the example in Eq. (20),

J (1) =
[

1 1 1 0 0
0 0 0 1 1

]

and J (2) =
[

1 0 0 1 0
0 0 0 0 0

]
. (22)

Given HZ, GT
Z , and JZ , a trellis may be constructed, closely

mirroring the trellis construction in Sec. IV. The main dif-
ference is that the decoding trellis must be modified to ac-
count for JZ terms, which represent the virtual ancilla in
each sheet. This gives rise to larger memories and more
allowed transitions. The 	l terms are modified to include l

(J )
t

components.
Once the trellis is formed, a soft-input–hard-output de-

coder will take as input marginal error probabilities on the
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qubits, and return 	h, 	g, and 	J , which correspond to a spe-
cific, maximum likelihood error pattern consistent with the
syndrome data on sheet m. More suited to our goal is a
soft-input–soft-output (SISO) decoder which returns updated
a posteriori probabilities for qubit error marginals. We discuss
such a decoder in Sec. VI.

B. Ancilla marginal exchange for consistency
between decoding sheets

When decoding is performed on each convolutional code
sheet, a given ancilla qubit, ak,m, is associated to correspond-
ing virtual ancilla, a′′

k,m and a′
k,m, from each of the neighboring

decoding sheets m + 1 and m − 1. For consistency, we require
the SISO marginal a posteriori error probabilities on a′

k,m and
a′′

k,m to match, i.e., P (a′′
k,m) = P (a′

k,m).
Independent SISO decoding of adjacent decoding sheets

does not automatically respect this constraint, so we perform
sequential rounds of independent decoding, and iteratively ex-
change marginals, P (a′′

k,m) ↔ P (a′
k,m) between each round,

until the marginals are satisfactorily converged.
This approach is similar to belief propagation on a mod-

ified Tanner graph, with a message passing schedule, which
gives priority to intrasheet messages over that of intersheet
messages [26,35–37]. It is unlikely that the process we have
proposed is optimal, but good numerical decoding results are
still possible as shown in Sec. VII for turbo codes.

In practical settings it may be desirable to terminate the
iterative message passing after a fixed number of rounds. In
this case, the marginals on the ancilla from adjacent sheet
decoders may not have converged. One heuristic resolution to
this is to average the inconsistent marginals on each ancilla,
P (ak,m) := (P (a′′

k,m) + P (a′
k,m))/2, and then make a hard de-

coding choice, by choosing the most likely error configuration
at each ancilla. A final decoding round is performed on each
sheet. This ensures that the decoding falls within the code
space.

VI. TRELLIS SISO ALGORITHM

So far, we have concentrated on constructing trellises for
convolutional codes. As already mentioned, we then use the
trellis to find optimal error configurations (i.e., a hard decod-
ing) or assign error marginals (i.e., soft decoding) that are
consistent with the syndrome data.

In this section, we present a modified MAP SISO trellis de-
coder, following the approach of Benedetto et al. [34] on clas-
sical convolutional codes. The modified algorithm compares
codewords and stabilizers against a trial error pattern, 	e 0,
determined from the syndrome data, and calculates marginal
error probabilities consistent with it.

The algorithm consists of three stages: (1) a forward pass,
which passes through the trellis from left to right, (2) a
backward pass, which passes through the trellis from right to
left, and (3) a local update, which determines marginals using
information from forward and backward passes.

In the rest of this section, we detail the core of the SISO
algorithm. As in prior sections, the trellis memory state at
frame t is αt . The initial error pattern 	e 0

t is calculated from the

syndrome 	S and the ISF. The physical operations associated
with a transition through the trellis are denoted 	pt .

A. Forward pass algorithm

The forward pass algorithm assigns a probability for each
memory state, A(αt | 	Si�t ), as we pass through the trellis
starting from the first frame, t = 1 (i.e., the leftmost frame
in the presentation of Fig. 6) and traversing to t = τ (right).
Here, 	Si�t is a shorthand notation which indicates that only
syndrome information up to frame t is used to calculate
likelihoods. At each frame, there are 2(kνg+nzνh ) memory states
to store. Note that for decoding sheets in the foliated con-
struction a memory term νJ must be incorporated for the JZ

gauges.
We assign initial probabilities A(α1 = 	0) = 1 and A(α1 �=

	0) = 0 to memory states at frame t = 1. The forward pass
algorithm then computes probabilities for subsequent memory
states as

A(αt+1| 	Si�t ) =
∑

	lt
A(αt | 	Si�t−1)Pr

( 	pt + 	e 0
t

)
Pr(	lt ), (23)

where 	pt = Up(αt , 	lt ) is given by Eq. (12), and we recall
from Eq. (13) that αt on the RHS of Eq. (23) is determined
by αt+1 and 	lt . Pr( 	pt + 	e 0

t ) is the a priori probability of the
error pattern 	pt + 	e 0

t , which depends on the details of the
prior error mode; for our purposes, this is just an i.i.d. error
process on each of the physical qubits, so that Pr( 	pt + 	e 0

t ) is
given by the binomial formula. Pr(	lt ) is the a priori probability
of undetectable error processes [generated by Eq. (8)]. For
convolutional codes, we take Pr(	lt ) to be a constant (so that
it factors out of A), however, it will become important when
we consider turbo codes, in which physical errors in the inner
code affect logical priors in the outer code.

B. Backward pass algorithm

The backward pass algorithm is identical to the forward
pass, but working now from the last frame, t = τ back to the
first, t = 1. The update rule is given similarly,

B(αt | 	Si�t1) =
∑

	lt
B(αt+1| 	Si�t+1)Pr

( 	pt + 	e 0
t

)
Pr(	lt ). (24)

The initial conditions are set as B(ατ = 	0) = 1 and B(ατ �=
	0) = 0, where τ is the final frame.

C. Local update algorithm

The local update calculates the likelihoods of physical
error patterns, 	ep,t = 	pt + 	e 0

t ∈ Zn
2, at frame t , given a valid

error configuration 	e 0
t (which is itself derived directly from

the syndrome data). That is, we calculate the marginals
P (	ep,t | 	S ), and the marginals over logical bits P (	el,t | 	S), where
	el ∈ Zk+nz

2 is a specification of the logical states at frame t .
These marginals depend in turn on the marginal beliefs of
memory states computed in the forward, A, and backward,
B, pass algorithms. As inputs, the decoder uses an initial prior
distribution, Pr(	ep,t ), for the error configuration 	ep,t , and the
logical error patterns, Pr(	l = 	el,t ), as well as the syndrome,
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and computes the marginals

P
(	ep,t |	e 0

t

) =Np

∑
	lt , αt :

	pt = Up (αt , 	lt )

A(αt )B(αt+1)Pr
( 	pt + 	e 0

t

)
Pr(	lt ),

(25)

P
(	el,t

∣∣	e 0
t

) =Nl

∑
αt :

	pt = Up (αt , el,t )

A(αt )B(αt+1)

× Pr
( 	pt + 	e 0

t

)
Pr(	el,t ), (26)

where Np and Nl are normalization constants chosen to en-
sure that

∑
	ep,t

P (	ep|	e 0
t ) = 1 and

∑
	el,t

P (	el|	e 0
t ) = 1. Again,

we recall from Eq. (13) that αt on the RHS of Eq. (23) is
determined by αt+1 and 	lt .

Equations (23)–(26) are the ingredients for the sum-
product belief propagation algorithm: the forward and back-
ward pass algorithms each run independently, and then the
local update calculates marginals for each of the 2n possible
error configuration over each of the τ frames. Storing this
information requires memory ∼τ2n. As an aside, the max-sum
algorithm, which has some practical performance benefits,
approximates the sum-product algorithm, by summing over
logarithms of marginals [33].

VII. FOLIATED TURBO CODES

Our main motivation for studying turbo codes is to demon-
strate the foliated construction and BP decoder in an extensi-
ble, finite-rate code family. Practically, these and other finite-
rate codes may have applications in fault-tolerant quantum
repeater networks [38–41], where local nodes create optimal
clusterized codes to reduce resource overheads or error toler-
ance [42], however, we do not address these applications here.

A. Turbo code construction

A turbo code is essentially a concatenation of two convolu-
tional codes, albeit with an interleaver between them. When
convolutional codes fail, they tend to produce bursts of errors
on logical bits. Turbo codes address this by concatenating en-
coded (qu)bits from the inner convolutional code into widely
separated logical (qu)bits in the outer code. The interleaver is
simply a permutation � on the inner logical qubits, and serves
to transform a local burst of errors from the inner decoder into
widely dispersed (and thus approximately independent) errors
that the outer decoder is likely to correct.

For the numerical results we present in this section, we
choose � to be a completely random permutation on the
inner code. This is a conventional choice for benchmarking
turbo codes, however, a completely random permutation leads
to highly delocalized encodings. This may be undesirable in
the quantum setting, and the optimal choice of interleavers
was discussed in Refs. [43,44]. In the context of constructing
clusterized codes, the interleaver choice will affect the weight
of stabilizers. In Sec. IX, we return to this issue, and show that
by choosing a structured interleaver, we reduce the weight of
stabilizers substantially. This reduces the weight of correlated
errors that build up during the systematic construction of the
cluster state resource.

Turbo codes are generated using underlying convolutional
codes. We use two different convolutional codes, one with
d = 3, which we refer to as the C3 family of codes, and
one with d = 5, which we refer to as the C5 family [45].
When embedded as clusterized codes the distance of these
codes are reduced to 2 and 3, respectively. This represents the
effective code distance deff of a single clusterized code sheet,
which forms part of the larger foliated structure. While the
effective distances are diminished for codes acting within a
single sheet, the distance of the foliated convolutional codes
remain 3 and 5, respectively. This is because some error
patterns, which are undetectable within a single sheet decoder
are detectable by neighboring layers, as discussed in Sec. V.

At the end of this section, we present numerical results
about the decoding performance of two families of foliated
turbo codes, T9 and T25 codes. T9 codes are generated
from the concatenation and interleaving of two C3 codes;
similarly, the T25 code is formed from the concatenation and
interleaving of two C5 codes. The distances of these turbo
codes are dT 9 = 9 and dT 25 = 25, respectively.

B. Turbo code decoders

We now develop a decoding method for foliated turbo
codes based on the trellis construction methods outlined in
Sec. V and the SISO decoder in Sec. VI. The trellis con-
struction and SISO decoder allow for the decoding of foliated
convolutional codes by iteratively decoding individual sheets
followed by a series of marginal exchanges on ancilla qubits.

Turbo codes consist of an interleaved concatenation of
two convolutional codes. The decoding approach is shown
schematically in Fig. 8. Using an a priori distribution of qubit
error states Pr(qI ) a soft-input–soft-output (SISO) decoder
is implemented and marginal values for qubits P (qI ) and
logical qubits P (lI ) are calculated for each decoding sheet
in the foliated code. Marginals are then exchanged between
the shared ancilla qubits in neighboring layers and used as
prior values for a new round of trellis decoding. This process
is applied iteratively.

Within a sheet decoder (i.e., red boxes in Fig. 8), the logical
marginals P (lI ) are deinterleaved (�−1) and used as priors
for the outer decoder P (qO ). The same process of ancilla
marginal exchange is performed and the decoding process is
iterated. Finally, the qubit marginals from the outer decoder
P (qI ) are interleaved (�) and used as logical priors P (lI ) for
the inner code.

C. Numerical results for turbo codes

As noted earlier, X errors on the foliated cluster commute
with parity check measurements. Thus, for our simulations,
we assume a phenomenological error model in which uncorre-
lated Z errors are distributed independently across the cluster
with probability p. The decoder performance is quantified in
terms of both word error rate (WER), which is the probability
of one or more logical errors across all k encoded qubits, and
the bit error rate (BER), which is the probability of an error
in any of the encoded qubits. These are defined formally in
Eqs. (28) and (30).
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FIG. 8. The decoding process for foliated turbo codes. An inner
sheet convolutional decoder is run for each sheet in the foliated
code. Ancillas marginals are exchanged between neighboring primal
(dual) layers, i.e., next-nearest neighbors, shown as dotted arrows.
The process is then iterated. The logical marginals P (lI ) are then
deinterleaved (�−1) and used by the outer sheet convolutional de-
coders. Ancilla marginals are exchanged, and as before the process is
iterated. The outer sheet decoders pass physical marginals P (qO ) to
corresponding inner decoders via the interleaver � for further decod-
ing rounds. This completes the turbo feedback loop. The outer sheet
decoders determine the final marginal outputs, P (lO ) and P (qO ),
after the iterative feedback and marginal exchanges are completed.

One common approach to numerically evaluating code per-
formance curves is to sample error patterns, 	ε, use the decoder
to find a recovery operation 	erec, and then test for success
or failure of the decoder with respect to the specific error
sample. The decoder is successful if 	εl ≡ G · (	ε + 	erec) = 	0,
and unsuccessful if not. If the decoder fails on any logical
qubit, this constitutes a word error; the hamming weight of 	εl

counts the number of logical bit errors.
One approach to generating code performance curves is to

fix the error rate per physical qubit, p, then generate Ntrials

error configurations at that error rate. The decoder will fail on
some number of those trials, and then the WER is a function
of the error rate, given by

WER(p) = #Word Failures

Ntrials

∣∣∣∣
p

. (27)

The error rate is then incremented, p → p′, and new trials are
run for the new value of p. Similarly, we define the BER (at a
given error rate, p, per physical qubit) to be

BER(p) = #Bit Failures

k Ntrials

∣∣∣∣
p

. (28)

In the numerical results reported here, we employ binomial
sampling, in which we sample over a fixed number of er-

rors, j = 0, 1, 2, . . . , and compute the failure probability for
each j ,

PWord(j ) = #Word Failures

Ntrials

∣∣∣∣
fixed j

, (29)

for a suitable range of values of j . We then use the binomial
formula to relate WER(p) to PWord(j ):

WER(p) =
n∑

j=0

PWord(j )

(
n

j

)
pj (1 − p)n−j . (30)

In practice, the upper limit of the sum can be truncated to
much less than n. Similarly, we define

PBit(j ) = #Bit Failures

k Ntrials

∣∣∣∣
fixed j

, (31)

so that the BER is given by

BER(p) =
n∑

j=0

PBit(j )

(
n

j

)
pj (1 − p)n−j . (32)

In what follows we present numerical results for code per-
formance as a function of the code size k = nr , and for several
different foliation depths, where we vary the number of code
sheets, L. We note that the case L = 1 is a special case: it
corresponds to decoding a single clusterized code sheet, in
which errors may also occur on the ancilla qubits (i.e., the
red squares in Fig. 1). This is equivalent to decoding the
base (i.e., unclusterized) code, but including faulty syndrome
measurements.

As an aside, we validate this binomial sampling method by
comparing the numerical results of Eq. (29) with numerical
results generated by the conventional sampling approach,
Eq. (30). Figure 10 contains a series of WER trials generated
using the conventional sampling with for the case of k = 40
and L = 6 (second panel, LHS), shown as points with error
bars, using Ntrials = 105 for the smallest value of p. These
points are in close agreement with the data generated through
binomial sampling (solid lines).

1. Numerical results for T9 turbo codes

Figure 9 shows the performance of the [n, k = n/16, 9] T9
self-dual foliated turbo code. We see that for a given foliation
depth L, the performance degrades with the size of the code k.
This indicates that the foliated T9 code is a poorly performing
code.

This is explained by considering the effective distance of
the clusterized, and then foliated T9 code. The T9 code is
generated using two constituent rate r = 1

3 C3 codes. By
construction these codes have a distance of 3, however, when
clusterized into a single code sheet (which is equivalent to
accounting for noisy stabilizer measurements that generate
faulty syndrome data) the distance is reduced to 2. In this
setting, the seed generator and stabilizer are

G = [D D 1 | 0 0], (33)

H = [1 + D + D2 1 + D2 1 | 1 1], (34)
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FIG. 9. Numerical performance results for the foliated T9
[n, k = n/16, 9] turbo code, for different numbers of foliated layers,
L = 1, 6, 8, 10 (rows), as a function of the error rate per qubit, p.
Different colors correspond to different code sizes, k = nr = 10
(lowest curve), 20, 40, 80, and 160 (highest curve) logical qubits;
shading indicates ±1σ . Word error rate (left column) counts any
error(s) across all k logical qubits. Bit error rate (right column)
counts the failure rate per logical qubit. The T9 code does not exhibit
threshold behavior: its performance degrades as the code size grows.

respectively. [Here, we use the notation that qubits the left of
the vertical bar are code qubits in the C3 code, and those to
the right of the vertical bar are ancilla qubits associated to
code stabilizer measurements; these correspond to quintuplets
of qubits in each frame of the shaded code sheet in Fig. 7(b).]

For the C3 code, an example of an undetectable weight
2 error pattern error pattern in a single code sheet is 	e =
[001|10], which has support on one of the ancilla. Since the
distance of the clusterized code sheet is 2, it is reduced to
an error detecting code within the sheet. We note that if this
specific error pattern were isolated within a larger foliated
structure, it would be detected by parity checks in the adjacent
sheets, which have support on the affected ancilla qubit.

Given the reduced distance of the clusterized code, we do
not necessarily expect this code to perform well in the foliated
regime. This is borne out in the numerical results: for a given
foliation depth, L; the T9 code has no threshold.

Though this negative result is unsurprising given the fore-
going discussion on the clusterized code distance, we show
this as an example of a poorly-performing foliated code. The
simplest way to rectify this issue is to increase the underlying
code distance, which we do in the next example.

FIG. 10. Numerical performance results for the foliated T25
[n, k = n/16, 25] turbo code, for different numbers of foliated lay-
ers, L (rows), as a function of the error rate per qubit, p. Different
colors correspond to different code sizes with the number of logical
qubits indicated as k = nr = 10 (shallowest curves), 20, 40, 80, and
160 (steepest curves); shading indicates ±1σ . The word error rate
(left column) counts any error(s) across all k logical qubits. Bit error
rate (right column) counts the failure rate per logical qubit. The T25
code exhibits thresholdlike behavior, in that for small error rates, the
performance of the code improves with code size. In order to verify
the binomial sampling process, a series of trials (shown as squares
with error bars black for k = 40, L = 6) were performed at each
value of p, and then evaluating Eq. (30).

2. Numerical results for T25 turbo codes

Figure 10 shows the performance of the [n, k = n/16, 25]
T25, self-dual foliated turbo code. For each L, there is a
threshold error rate around p ∼ 2%, below which the code
performance improves with code length (up to at least 160
encoded logical qubits per code sheet, encoded into 4160
physical qubits per sheet), consistent with (pseudo-)threshold
behavior seen in turbo codes [23]. As L increases, the thresh-
old decreases, more pronouncedly for the WER than the BER.
The range of k and L that we can simulate is limited by
computational time, so we cannot explore the asymptotic
performance for large L. Nevertheless, numerics indicate that
foliated turbo codes perform quite well for moderate depth
foliations.

We note that the foliated construction transforms a clus-
terized code into a fault tolerant resource state, but with
a reduced threshold. This is seen in Fig. 10, in which the
threshold is seen to reduce with the number of sheets in
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the foliation. A similar effect is also seen in Raussendorf’s
foliated surface-code construction, in which the fault-tolerant
threshold �1% is smaller than the ∼11% threshold (assum-
ing perfect stabilizer measurements) for the surface code on
which it is based.

One important difference between the surface code and a
turbo code family is that the code distance is fixed in the latter,
whereas it grows in the former. As a result, we do not expect
this threshold behavior to survive for large foliation depths:
this would be analogous to the degradation in performance of
Raussendorf’s construction if the transverse code size were
held fixed, while the foliation depth were increased. In the
numerical results shown, the code distance is fixed at d = 25,
and so we expect that for foliation depths L � d, the thresh-
old will disappear; consequently, the code is more correctly
described as having a pseudothreshold. Nevertheless, there
may be applications where this is sufficient for practical
purposes.

VIII. FOLIATED BICYCLE CODES

A. Construction

Bicycle code are a class of finite-rate LDPC codes. They
are self-dual CSS codes generated by sparse circulant ma-
trices. A circulant matrix is formed by a seed row vector
which is rotated by one element in each successive row in the
matrix. For a binary sparse cyclical matrix C = m × m with
row weight w, a bicycle code can be defined by HX = HZ =
[C|CT]. By construction HX and HZ are orthogonal:

HXH T
Z = [C|CT][C|CT]T = CCT + CTC = 0. (35)

To create the generator matrix k rows are removed from
H . This generates a [[2m, k, d ≈ 2w]] quantum code. Here,
the distance is only approximately 2w and will depend on the
rows removed from C and the construction of C itself.

We can separate the code into two Tanner graph represen-
tations, corresponding to X and Z stabilizers. Since bicycle
codes are self-dual the Tanner graphs will be identical in both
cases.

In the foliated setting, stabilizers are parity check operators
of the form given in Eq. (2). The code can be separated
into two Tanner graphs, one which contains qubits within the
primal sublattice, and one which contains on qubits in the dual
sublattice. For example, the primal Tanner graph contains the
code qubits in odd sheets 2m + 1 and ancilla qubits in even
sheets 2m. Primal parity checks are parity check operators,
which are centered on the sheets 2m + 1.

B. Decoding

Bicycle decoding is typically performed using belief prop-
agation on the Tanner graph representation of the code
[36,46–48]. A variable node corresponds to a given physical
qubit; and records the likelihood of all possible errors on that
qubit. A factor node corresponds to a given stabilizer, which
constrains the possible error states of the connected variable
(qubit) nodes.

A factor graph G = (V,E) is a bipartite graph defined by
the set, V = A ∪ I , of variable nodes I = {q1, q2, . . . , qn},
and factor nodes, A = {a1, a2, . . . , a(n−k)/2}, and edges, E,

between variable and factor nodes, E = {(q, a)|a ∈ A, q ∈
N (a)}, where N (a) is the set of all variables, which appear
in constraint a.

The belief propagation algorithm calculates marginal dis-
tributions for the possible error states of each qubit by using
repeated message passing. A belief, bi (εj ), represents the
probability that qubit qi has suffered error εj ; the index j

enumerates over possible errors in the error model. This belief
is calculated from messages, ma→q (εj ) ∈ [0, 1], in which
factor nodes, a, report a marginal probability that node q has
suffered error εj ,

bi (εj ) = 1

Ni

∏
a∈N (qi )

ma→qi
(εj ), (36)

where Ni is a normalization condition to ensure
∑

εj
bi (εj ) =

1 at each qi .
To calculate bi (εj ), we also pass messages, mq→a (εj ) ∈

[0, 1] from qubit nodes to check nodes, reporting the likeli-
hood that q is subject to error εj . The values of messages in
both directions are determined by iterating over the following
consistency conditions:

ma→q (εj ) =
∑

	ep :p∈N (a)\q
fa (	ep|εj on q )

∏
r∈N (a)\q

mr→a (ep,r ),

(37)

mq→a (εj ) =
∏

b∈N (q )\a
mb→q (εj ). (38)

Here we sum over all possible configurations of errors 	ep

over the neighbors of a (excluding the target qubit q), and
fa (	ep|εj on q ) ∈ [0, 1] are constraint functions that return the
a priori likelihood of the error configuration 	ep given that
qubit q is subject to error εj , and ep,r is the restriction of
the error configuration 	ep to qubit r . The function f serves
two purposes: it vanishes on error configurations that are
inconsistent with syndrome data, and otherwise returns the
likelihood of a valid error configuration. For our numerical
simulations, we will assume independently distributed errors,
which implicitly defines f . We note in passing that f may be
tailored to correlated error models if necessary.

To begin the iterative message passing, we initialize the
messages on the RHS of Eq. (37) using the a priori error
model

mq→a (εj ) = Pr(εj ). (39)

Belief propagation is exact on tree graphs, allowing for
the factorization of complete probability distribution into
marginals over elements, and Eqs. (37) and (38) naturally
terminate at the leaves of the tree [35]. For loopy graphs, the
iterative message passing does not terminate in a fixed number
of steps; rather we test for convergence of the messages
to a fixed point. In some cases, particularly at higher error
rates, the message passing may not converge; in this case we
simply register a decoding failure on the subset of logical
qubits that are affected. Further, the presence of many short
cycles may lead to poor performance of the decoder. In the
foliated bicycle code, there are numerous short, intersheet,
graph cycles, however, in the numerical results we present
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FIG. 11. Numerical performance results for a foliated [n, k =
n/16, d ≈ 26] bicycle code, for different numbers of foliated layers,
L = 1, 6, 10 (rows), as a function of the error rate per qubit, p.
Different colors correspond to different code sizes, k = nr = 10
(shallowest curves), 20, and 40 (steepest curves), shading indicates
±1σ . Word error rate (left column) counts any error(s) across all k

logical qubits. Bit error rate (right column) counts the failure rate per
logical qubit.

in the next section, we see empirically that the decoder is
effective nonetheless.

Finally, we note that the message passing algorithm de-
scribed here can be applied directly to the full foliated code.
Here, the marginal exchange between sheets happens concur-
rently with intrasheet message passing, i.e., Eq. (38) performs
both intersheet marginal exchange and intrasheet message
passing.

C. Numerical results for bicycle codes

We analyze the performance of the codes as a function of
the code size k = nr , and the number of foliated layers L.
Figure 11 shows the performance of a d � 26,3 r = 1/16,
bicycle code, based on Monte Carlo simulations of errors.
We use the same binomial sampling schedule as described in
Section VII C.

For each L, there is a threshold error rate around
p ∼ 4.5%, below which the code performance improves with
code length (up to at least 40 encoded logical qubits per
code sheet). As with the Turbo codes, as L increases, the
performance increase gained from larger codes is diminished.
This result shows that LDPC bicycle codes are potentially
promising codes for foliating.

3This distance bound is established by a heuristic minimisation of
the length of the logical operators.

FIG. 12. A suitable time ordering for implementing C-PHASE

gates between ancilla qubits and code qubits for the C3 convolutional
code defined in Eq. (14), using the transpose interleaver defined in
Eq. (41). Translations of these gates generate the full clusterized
code. Thick, red lines indicate C-PHASE to implement at the corre-
sponding time Tj ; fine grey lines indicate previously implemented
gates. The distance between frames t and t ′, and frames t ′ and t ′′

are τ

3 .

IX. CLUSTERIZED CODE ARCHITECTURE

In this section, we analyze the gate based implementation
of cluster state resources for clusterized convolutional and
turbo codes. The faulty implementation of cluster bonds (C-
PHASE gates) causes correlated errors to arise during the
construction of the cluster state resource. It is important to
model these types of errors and ensure that the decoding
process is fault-tolerant.

A. Schedule for cluster-state construction

Cluster state construction requires the preparation of re-
source |+〉 qubits and the implementation of C-PHASE gates,
�(a, b), between pairs of qubits. The gates must be imple-
mented over a series of time steps so that during any given
time step, Tj , any qubit is addressed by at most one phase
gate. To generate clusterized codes phase, gates are imple-
mented between ancilla qubits and code qubits according to
the Tanner graph of the SZ stabilizers. The number of ancilla
qubits is |SZ|. The minimum number of time steps required
to implement pairwise C-PHASE gates between each ancilla
and the code qubits is proportional to the weight of the largest
stabilizer.

The bonds in a clusterized convolutional code can be char-
acterized by a series of qubit pair operations �Tm

(ai,j , ci ′,j ′ ),
where ai,j refers to the ith ancilla qubit in frame j, ci ′,j ′ refers
to the i ′th code qubit in frame j ′ and Tm is a “time” index in
the cluster construction schedule.

As an example consider the C3 code defined in Eq. (14).
The parity check operators are weight 6, and the correspond-
ing ancilla qubit are represented by square vertices in the
figure. As a result, this clusterized code may be implemented
in six time steps, T1, . . . , T6. A possible schedule for im-
plementing C-PHASE gates is shown in Fig. 12. Thick, red
lines indicate C-PHASE to implement at the corresponding time
Tj ; fine grey lines indicate previously implemented gates.
Implied, but not shown are simultaneous translations of these
gates across all frames, indexed by . . . , t − 1, t, t + 1, . . . .

For the case of Turbo codes, the number of cluster bonds
between an ancilla qubit for an outer parity check depends
on the weight of the outer convolutional parity check, the
weight of the inner generator, and the choice of interleaver.
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p
tt − 1 t + 1 t + 2 t + 3 t + 4

Πp

t + 1t t t + 1 t t + 1

FIG. 13. The transpose interleaver for a rate 1
3 code. The inter-

leaver takes a sequence of frames containing bits 	p and returns a
sequence � 	p , containing the first bits in every frame, followed by
the second bits in every frame and then the third bits in every frame.
If 	p contains τ frames, then t ′ = t + τ/3 and t ′′ = t + 2τ/3.

The outer parity check is formed by encoding using the inner
code generator. In the case of a random interleaver and a large
code, each bit within the convolutional parity check is distant
from each other bit. As a result the total weight for the outer
parity check will be wt(Houter ) × wt(Ginner).

As we discussed in Sec. VII A, the choice of interleaver
has an effect on the weight of the code stabilizers. In the
T9 and T25 clusterized turbo codes, a completely random
interleaver will generate stabilizers with weight up to 184

and 985, respectively. In what follows, we describe more
structured interleavers that reduce these weights to 10 and 26,
respectively.6

An interleaver that achieves these lower weight stabilizers
is one which permutes the order of bits 	p such that in a block
of f frames, the first bit within each frame is mapped to a
single contiguous block 	bt by the permutation; the second bit
within each frame is mapped to another, well spaced block,
bt ′ , and so on. This is illustrated in Fig. 13. The input sequence
over τ frames is

	p = ((
p1

1, p
2
1, . . . , p

n
1

)
,
(
p1

2, . . . , p
n
2

)
, . . . ,

(
p1

τ , . . . , p
n
τ

))
≡ ( 	p1, 	p2, . . . , 	pτ ) (40)

where 	pt = (p1
t , p

2
t , . . . , p

n
t ) is the input vector over frame

t , with n physical (qu)bits. The interleaver, �, applies a
permutation on 	p such that

� 	p = ((
p1

1, p
1
2, . . . , p

1
τ

)
,
(
p2

1, . . . , p
2
τ

)
, . . . ,

(
pn

1 , . . . pn
τ

))
= (	b1, 	b2, . . . , 	bn). (41)

We call this interleaver a transpose interleaver.7 This in-
terleaver does not disperse bits as widely throughout the
bitstream as a completely random interleaver, however, it does

4wt(Ginner ) × wt(Houter ) = 3 × 6.
5wt(Ginner ) × wt(Houter ) = 7 × 14.
6Note that we have not done threshold simulations for these inter-

leavers; the numerical results presented in Fig. 10 may depend on the
choice of an interleaver.

7If we write 	p as a τ × n matrix where the 	pt are row vectors, then
� 	p = 	pT is the n × τ matrix transpose.

FIG. 14. A suitable time ordering for implementing C-PHASE

gates between ancilla qubits and code qubits in a clusterized T9 turbo
code, which is a concatenation of two C3 convolutional codes. The
gates for three inner seed stabilizers (square ancillas) and one outer
seed stabilizer (diamond ancilla) are shown. All other stabilizers are
translations of these. Each qubit is acted on by at most one gate
at each time step. Thick, red lines indicate C-PHASE to implement
at the corresponding time Tj , fine grey lines indicate previously
implemented gates.

generate inner parity check stabilizers which have signifi-
cantly lower rate than wt(Houter ) × wt(Ginner).

Using a transpose interleaver, the cluster construction
schedule is shown in Fig. 14 for the T9 code. In this example,
there are two classes of parity check operators for each frame:
square vertices correspond to weight 6 stabilizers, and the
diamond vertices correspond to weight 10 stabilizers. As a
result, this clusterized code may be implemented in ten time
steps, T1, . . . , T10.

Also, using a transpose interleaver, the T25 code can be
implemented in 26 time steps, and has maximum weight 26
stabilizers. We present the cluster-state construction schedule
and interleaver details in Appendix E.

To generate the cluster resource for a foliated code, each
sheet can be generated independently using a suitable sched-
ule for the corresponding primal and dual clusterized codes.
Additional two time-steps are then required to connect the
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code qubits of neighboring sheets to build the fully foliated
network.

B. Error propagation during cluster-state construction schedule

During the construction of cluster states errors may ac-
cumulate on individual qubits, or be caused by faulty gate
implementation between qubits. We simplify the analysis of
these errors by restricting our analysis to X and Z Pauli errors.
A Z error commutes with C-PHASE gates, however, an X error
does not, and will propagate a Z error to the neighboring
qubit.

Consider the case where an X error occurs on an ancilla
qubit, ak , at some time, Tε in the construction schedule.
Subsequent C-PHASE gates will generate Z errors on all code
qubits ci ∈ N (ak ) subject to gates �Tk

(ci, ak ) where Tk > Tε.
Note that

⊗
ci∈N (ak ) Zci

is a stabilizer, so the this error pattern
is equivalent Z errors on qubits ci subject to gates �Tk′ (ci, ak ),
where Tk′ � Tε. As a result, the maximum number of Z errors
arising during the cluster construction is equal to half the
weight of the stabilizer. For this reason codes with low weight
parity checks are desirable.

The choice of time ordering for gates affects the types
of correlated error patterns that arise during construction.
Depending on the choice of code, some time orderings may be
more favorable than others, producing error patterns which are
more likely to be corrected. One criterion that should be met
is that any single physical error during the cluster construction
should lead to a correctable (i.e., decodable) correlated error
pattern after the � gates have been made. If the number of
correlated errors is less than half the code distance, wmax <

d/2, then this condition is always met. On the other hand, if
the number of errors that are propagated is larger than d/2,
then we must verify explicitly that the resulting error pattern
is correctable.

As an example, the schedule for constructing the d = 9
T9 code, which is shown in Fig. 14 using the transpose
interleaver. This code has stabilizers of weight 10 associated
to the ancillae indicated by diamonds. As a result, an X error
midway through the cluster construction could result in a
pattern of up to wmax = 5 correlated Z errors on code qubits
adjacent to the diamond ancillae. In this case, even though
wmax > d/2, we have checked that the decoder correctly
corrects all such errors arising in the schedule in Fig. 14.

Similarly, for the d = 25 T25 code, a maximum stabilizer
weight of 26 can be achieved using the transpose interleaver.
A physical error during cluster construction could cause cor-
related error of weight wmax = 13. Again, in this case, even
though wmax > d/2, we have checked that the schedule for
cluster construction (listed in Appendix E) produces an error
pattern, which is correctly decoded.

X. CONCLUSION

In conclusion, we have shown how to clusterize arbitrary
CSS codes. We have shown how to foliate clusterized codes,
generalizing Raussendorf’s 3D foliation of the surface code.
We have described a generic approach to decoding errors
that arise on the foliated cluster using an underlying soft
decoder for the CSS code as a subroutine in a BP decoder,

and applied it to error correction by means of a foliated turbo
code. We have also shown how decoding can be performed
in the case of foliated bicycle codes. These construction may
have applications where codes with finite rate are useful, such
as long-range quantum repeater networks.

We have exemplified the foliated construction with several
code families, namely the T9 and T25 codes, and a the LDPC
Bicycle code. We believe this is the first example of a finite
rate generalization of a sparse cluster-state code with pseu-
dothreshold behavior (i.e., up to moderately large code sizes).
The T25 and the Bicycle code both exhibit thresholdlike
behavior, even with moderate levels of foliation.

An important direction for future work is the analysis of er-
ror models that take into account the cluster state construction
schedule in Sec. IX B, the correlated error patterns that arise
during construction. Another direction that will be important
for repeater application is the tolerance of the foliated con-
struction and decoding process to erasure errors. This is likely
to depend on the percolation threshold in the corresponding
tanner graph, as discussed in Ref. [16]. Finally, developing
code deformation protocols for performing gates within the
general foliated architecture is an important direction for
future research.
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APPENDIX A: EXAMPLE OF INVERSE
SYNDROME FORMERS

We provide an example of the construction of an inverse
syndrome former (ISF) and the corresponding pure errors,
using the example of the seven-qubit Steane code. asad

The Steane code is self-dual, so that the generator G, parity
check, H and ISF matrices are the same for the X- and Z-like
operators, so we will drop the Pauli labels. The parity check
matrix H for the Steane code is given by the binary support
vectors corresponding to the stabilizers defined in SSteane

Z in
Eq. (1), and GT = {1, 1, 1, 1, 1, 1, 1}. The ISF is chosen to
satisfy Eq. (6). We group G, H and one possible choice of
ISF as submatrices in a composite, square matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

GT

H

ISF

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 1 0 0 0 1 1
0 1 1 1 0 0 1
0 0 0 1 1 1 1
0 1 1 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)
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It is straightforward to check that⎡
⎣GT

H
ISF

⎤
⎦.[G ISFT HT] = I7×7, (A2)

consistent with Eq. (6), i.e., ISFT is a pseudoinverse to H.
A given error chain 	ε yields a syndrome 	S = H · 	ε ∈ Z3

2,
from which we can compute a pure error 	e 0 = ISFT · 	S. Since
H · ISFT = I, the pure error satisfies H · 	e 0 = H · ISFT · 	S =
	S, i.e., it has the same syndrome as the actual error. Equiva-
lently, 	ε + 	e 0 is a logical operator on the code space.

APPENDIX B: TRANSFER FUNCTION NOTATION

Transfer functions are a convenient method of expressing
code families that have a regular structure but an arbitrary
length. Convolutional codes are a family of codes that are
often represented by transfer functions. In this Appendix, we
show the relationship between the full matrix expressions for
the generators, G, and the seed generators, G.

A k × 1 vector of logical bits is expressed by vector LT =
[l1, l2, . . . , lk]. The generator matrix G can be represented
using a finite dimensional seed generator with delay opera-

tions. We introduce D and D̃, which are f × f n and f n ×
f matrices defined by D = [D0If D1If . . . Dk−1If ]

and D̃
T = [D̃0If D̃1If . . . D̃k−1If ] for a rate 1

f
code.

The operators D and D̃ satisfy D̃i × Dj = δij . Here, D is the
usual delay operator and D̃i is a mnemonic for the inverse of
Di . Then we have

D̃ × D =

⎡
⎢⎢⎢⎣

D̃0D0If . . . D̃0Dk−1If

D̃1D0If . . . D̃1Dk−1If

...
...

D̃k−1D0If . . . D̃k−1Dk−1If

⎤
⎥⎥⎥⎦If k. (B1)

We write GL = D̃ DGL from which we can derive finite size
seed generator.

As an illustration consider a rate 1
3 code with generator

matrix

GT =
⎡
⎣111 100 110

111 100 110 . . .

111 100 110

⎤
⎦. (B2)

We can express the encoding as

GL = D̃[If If D . . .] × G ×

⎡
⎢⎢⎢⎢⎢⎣

l1

l2

...

lk

⎤
⎥⎥⎥⎥⎥⎦, (B3)

= D̃

⎡
⎢⎣

1 + D + D2 D + D2 + D2 D2 + D3 + D4

1 + D2 D + D3 D2 + D4 . . .

1 D D2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

l1

l2

...

lk

⎤
⎥⎥⎥⎥⎥⎦

= D̃

⎡
⎢⎣

(1 + D + D2)(l1 + l2D + . . . + lkD
k−1)

(1 + D2)(l1 + l2D + . . . + lkD
k−1)

(1)(l1 + l2D + . . . + lkD
k−1)

⎤
⎥⎦,

= D̃

⎡
⎢⎣

1 + D + D2

1 + D2

1

⎤
⎥⎦ k−1∑

i=0

Dili+1,

= D̃G

k−1∑
i=0

Dili+1, (B4)

where D̃ is an f n × f matrix, with f = 3. Here, we have
D0 ≡ 1. In the last line, we define the seed generator G, which
is a 3 × 1 matrix defined in terms of delay operators.

To output the physical qubits from this seed generator,
a string of logical input bits L is multiplied by �(D) =
[1 D D2 . . .]. In our working example, we have

k−1∑
i=0

Dili+1 ≡ �(D) × L. (B5)

The code qubits can be determined by multiplying this
expression by G. For the more general case of a rate b

f
, code

takes b logical inputs and produces f physical outputs at each
frame. For an encoding operation, we have

c = GL,

= D̃DGL,

= D̃G�L, (B6)
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where [c] = f n × 1, [D̃] = f n × f, [D] = f × f n, [G] =
f × b, and [�] = b × bn.

APPENDIX C: TRANSFER FUNCTION MANIPULATION

Now that we have established the implementation of trans-
fer functions as a description of convolutional codes, consider
the problem of determining the ISF. The standard approach
takes a pseudoinverse of the seed generator matrix. For a rate
b
f

code, the generator matrix has size nb × nf , where n is the
number of frames. We have the property

G−1 × G = Inb×nb. (C1)

To express this in terms of transfer function notation, we
have

Inb×nb = D̃G−1GD,

= D̃G−1G(D)

×

⎡
⎢⎣

1 D . . . Dk−1 0 0 . . . 0
0 0 . . . 0 1 D . . . Dk−1

...

⎤
⎥⎦,

= �T(D̃)G−1(D̃)G(D)�(D). (C2)

We can use the identity

D̃jDi = δij = D̃0Di−j (C3)

to express functions of D̃ in terms of D. Note that the order
of operations must be performed so that all D follow D̃ terms.
From Eq. (C2), we have

Inb = D̃0�T(D−1)G−1(D−1)G(D)�(D),

= D̃0�D�T(D−1)G−1(D−1)G(D)�(D)�T(D̃),

= D̃0G−1(D−1)G(D),

= G−1(D̃)G(D). (C4)

The pseudoinverse of G(D) is G(D−1). To calculate this, we
make a small alteration to G(D̃) by substituting the terms Di

for D̃−1.
We now work through an example to demonstrate this

approach. Consider the case of a rate 2
3 convolutional code

where we wish to find its parity check matrix. One of the
generators is taken from our working example and the second
generator input is [D,D, 1]. We have

[GT|I ] =
⎡
⎣ D 1 1 1 0 0

1 + D + D2 1 + D2 1 0 1 0
0 0 1

⎤
⎦,

(C5)

which has a pseudoinverse of

[I |G−1] =
⎡
⎣1 0 0 1 + D 1 + D 1 + D + D2

0 1 0 D D 1 + D2

1 + D D D2

⎤
⎦.

(C6)

To satisfy the condition G−1G = I, we note that the prod-
uct of the first column of G−1 and the first row of G must

be 1. The same is true for the second column and second row.
The product of the third column of A and the generators must
be zero. Since HG = 0, and the number of parity checks is
n − k = 1, this means the third column must be equivalent to
H T. Expressed in transfer function form this gives us

H (D−1) = [1 + D + D2 1 + D2 D2]. (C7)

It follows that

H (D) = [1 + D−1 + D−2 1 + D−2 D−2],

= [1 + D + D2 1 + D2 1] × D−2. (C8)

We recognize that the parity check is equivalent to the first
seed generator shifted by 2 frames. If we compensate for
the shift, then the two are equivalent (HX = HZ) since this
convolutional code is self-dual. Performing an inverse on
Eq. (C6), we should reclaim the original seed generators as
well as the inverse syndrome former:

[
GT

0 (D−1) I
]

=
⎡
⎣1 + D 1 + D 1 + D + D2 1 0 0

D D 1 + D2 0 1 0
1 + D D D2 0 0 1

⎤
⎦,

(C9)[
I

G(D)
ISF

]
=

⎡
⎣1 0 0 D D 1

0 1 0 1 + D + D2 1 + D2 1
0 0 1 D 1 + D 0

⎤
⎦.

(C10)

The inverse syndrome former ISF is given by

ISF(D) = [D 1 + D 0]. (C11)

The product of ISF(D) and H (D) is exactly 1. We can express
this as

ISF(Di ) × H (Dj ) = δij . (C12)

For an arbitrary syndrome, we can use the ISF to generate an
error pattern which satisfies the syndrome.

APPENDIX D: SYNDROME AND ERROR
PATTERN CALCULATIONS

Here we show how to calculate the syndrome 	S and initial
error pattern 	e 0 in the examples given in Sec. IV. The results
appearing in Eq. (15) are calculated using H, 	ε, and the ISF.
The complete list of stabilizers is given by translations of the
seed stabilizer by Dj . The index j gives the j th row of the
parity check matrix. We have, for all j ∈ {1, . . . , τ },

Hj = [1 + D + D2 1 + D2 1]Dj,

ISF = [ D D 0].

For reference, we also write H in the less compact but more
direct notation of Eq. (5), using the colors to match terms
above with locations of 1’s in the first row below; subsequent
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rows are translations of the top row

H =
⎡
⎣. . . 000 111 100 110 000 . . .

. . . 000 111 100 110 000 . . .

. . . 000 111 100 110 000 . . .

⎤
⎦

nzτ×nτ

,

For the blue path in the example of Eq. (15), the error
pattern, expressed in delay notation is

	ε = [D 0 0]Dt, (D1)

The j th element of the syndrome is then given by

Sj = Hj · 	εT(D̃),

= Dj (1 + D + D2)D̃t+1,

= δj,t+1 + δj+1,t+1 + δj+2,t+1,

= δj,t+1 + δj,t + δj,t−1,

which corresponds to the syndrome, 	S, listed in Eq. (15), with
1’s in the syndrome at frames t − 1, t and t + 1, and zero
everywhere else.

In delay notation,

	S =
∑

j

SjD
j = Dt+1 + Dt + Dt−1, (D2)

and then using the ISF and the syndrome we calculate the
initial error pattern

	e 0 = ISF · 	S,

= [Dt + Dt+1 + Dt+2 Dt + Dt+1 + Dt+2 0],

which is expressed as the string of bits . . . 110110110 . . . in
Eq. (15), with the first triplet belonging to frame t .

The example using the red path, as shown in Eq. (16),
uses the same code. As such the terms for H and ISF are the
same as the previous example. The error pattern used in this
example is

	ε = [D D 0]Dt.

This generates the j th element of the syndrome

Sj = Dj (1 + D + D2)D̃t+1 + Dj (1 + D2)D̃t+1,

= Dj+1D̃t+1,

= δj+1,t+1,

= δj,t .

In delay notation, 	S = Dt , and then using the ISF and the
syndrome we calculate the initial error pattern This agrees
with the syndrome in Eq. (16).

The initial error pattern is given by

	e 0 = ISF · 	S,

= [Dt+1 Dt+1 0],

which is expressed as the string of bits 110 in frame t + 1 of
in Eq. (16).

APPENDIX E: SCHEDULE FOR CONSTRUCTING
THE T25 CLUSTER CODE

The C5 code is a self-dual rate r = 1
3 code with stabilizers

generated by

H =
⎡
⎣1 + D +D2 1 + D2 + D3 1 + D2 + D3

+D3 + D4 +D5 +D4 + D5

⎤
⎦. (E1)

The weight of this stabilizer is 14, and as such a clusterized
code can be constructed in 14 time steps. Figure 15 depicts the
form of the cluster state used to construct the clusterized C5
code. One possible scheduling for gate operations is recorded
below using �(ai,j , ci ′,j ′ , Tm) for gate operations, where i

refers to the ith ancilla qubit within a frame and j refers to
the j th frame of the code and Tm is a time index. The terms
a and c denote ancilla and code qubits respectively. The C5
code is a rate r = 1

3 code and as such there are 3 code qubits
and 1 ancilla qubit per frame. A possible scheduling for gate
operations is given by

Order C3 =
�T1 (a1,t , c1,t ), �T2 (a1,t , c3,t+4),
�T3 (a1,t , c1,t+1, �T4 (a1,t , c3,t+3),
�T5 (a1,t , c3,t+2), �T6 (a1,t , c1,t+3),
�T7 (a1,t , c1,t+2, �T8 (a1,t , c2,t ),
�T9 (a1,t , c2,t+3), �T10 (a1,t , c3,t+5),
�T11 (a1,t , c3,t ), �T12 (a1,t , c2,t+2),
�T13 (a1,t , c2,t+5), �T14 (a1,t , c1,t+4).

(E2)

Encoding these stabilizers with another C5 convolutional
code produces a turbo code whose outer stabilizers are weight
7 × 14 = 98, where 7 is the weight of the generators, GC5.
The weight of these stabilizers is very high.

To reduce the effective weight of these outer stabilizers it is
possible to make a choice of interleaver such that the weight
of these stabilizers is greatly reduced by taking operator
products with inner stabilizers (whose form is identical to the
scheduling outlined for the C3 code above). One such choice
of interleaver is to generate independent inner encodings for

FIG. 15. The cluster state resource for the [n, n/3, 5] C5 code.
The ancilla (square) shares cluster bonds (lines) with the code qubits
(circles). A single stabilizer of weight 14 is illustrated in black,
and all other stabilizers are a translation of this seed. Construction
of this cluster state requires assigning a schedule for each bond in
the stabilizer. The same scheduling can be used in parallel with the
other stabilizers, such that the total number of time steps required to
generate the entire cluster is 14.
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set of qubits produced by the outer encoder, as determined
by their position within a frame. For example encode all of
the qubits, which are in the first position in every frame, then
encode all the qubits which are in the second position etc. This
produces an inner encoding where logical qubits are more

closely correlated than a random interleaver. The benefit is
that an inner stabilizer can be generated with a weight of only
26, as compared to 98.

One possible scheduling for a weight 26 stabilizer pro-
duced by this choice of interleaver is given by

Order T25(1) =
�T1 (A1,t , c2,t ), �T4 (A1,t , c2,t+5),
�T7 (A1,t , c2,t+1), �T10 (A1,t , c2,t+3),
�T13 (A1,t , c3,t+2), �T16 (A1,t , c3,t+5),
�T19 (A1,t , c3,t ), �T20 (A1,t , c3,t+3),
�T23 (A1,t , c2,t+2).

(E3)

Order T25(2) =
�T2 (A1,t , c2,t ′ ), �T5 (A1,t , c1,t ′+5),
�T8 (A1,t , c3,t ′+1), �T11 (A1,t , c2,t ′+3),
�T14 (A1,t , c2,t ′+5), �T17 (A1,t , c3,t ′ ),
�T21 (A1,t , c1,t ′+4), �T24 (A1,t , c2,t ′+2).

(E4)

Order T25(3) =
�T3 (A1,t , c2,t ′′ ), �T6 (A1,t , c2,t ′′+6),
�T9 (A1,t , c3,t ′′+1), �T12 (A1,t , c3,t ′′+2),
�T15 (A1,t , c3,t ′′+6), �T18 (A1,t , c3,t ′′ ),
�T22 (A1,t , c2,t ′′+3), �T25 (A1,t , c1,t ′′+2),
�T26 (A1,t , c1,t ′′+3).

(E5)

The scheduling has been split into three components, (1), (2), and (3), referring to each of the outputs bitstreams from the
outer encoder. The frame indices t, t ′ and t ′′ refer to frames which are removed from each other, such that each code qubit in the
scheduling is uniquely identified by the scheme. Finally, we have substituted a with A to refer to the outer ancilla qubits.
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