34 research outputs found

    Assessment of orthologous splicing isoforms in human and mouse orthologous genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent discoveries have highlighted the fact that alternative splicing and alternative transcripts are the rule, rather than the exception, in metazoan genes. Since multiple transcript and protein variants expressed by the same gene are, by definition, structurally distinct and need not to be functionally equivalent, the concept of gene orthology should be extended to the transcript level in order to describe evolutionary relationships between structurally similar transcript variants. In other words, the identification of true orthology relationships between gene products now should progress beyond primary sequence and "splicing orthology", consisting in ancestrally shared exon-intron structures, is required to define orthologous isoforms at transcript level.</p> <p>Results</p> <p>As a starting step in this direction, in this work we performed a large scale human- mouse gene comparison with a twofold goal: first, to assess if and to which extent traditional gene annotations such as RefSeq capture genuine splicing orthology; second, to provide a more detailed annotation and quantification of true human-mouse orthologous transcripts defined as transcripts of orthologous genes exhibiting the same splicing patterns.</p> <p>Conclusions</p> <p>We observed an identical exon/intron structure for 32% of human and mouse orthologous genes. This figure increases to 87% using less stringent criteria for gene structure similarity, thus implying that for about 13% of the human RefSeq annotated genes (and about 25% of the corresponding transcripts) we could not identify any mouse transcript showing sufficient similarity to be confidently assigned as a splicing ortholog. Our data suggest that current gene and transcript data may still be rather incomplete - with several splicing variants still unknown. The observation that alternative splicing produces large numbers of alternative transcripts and proteins, some of them conserved across species and others truly species-specific, suggests that, still maintaining the conventional definition of gene orthology, a new concept of "splicing orthology" can be defined at transcript level.</p

    Evolutionarily conserved bias of amino-acid usage refines the definition of PDZ-binding motif

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interactions between PDZ (PSD-95, Dlg, ZO-1) domains and PDZ-binding motifs play central roles in signal transductions within cells. Proteins with PDZ domains bind to PDZ-binding motifs almost exclusively when the motifs are located at the carboxyl (C-) terminal ends of their binding partners. However, it remains little explored whether PDZ-binding motifs show any preferential location at the C-terminal ends of proteins, at genome-level.</p> <p>Results</p> <p>Here, we examined the distribution of the type-I (x-x-S/T-x-I/L/V) or type-II (x-x-V-x-I/V) PDZ-binding motifs in proteins encoded in the genomes of five different species (human, mouse, zebrafish, fruit fly and nematode). We first established that these PDZ-binding motifs are indeed preferentially present at their C-terminal ends. Moreover, we found specific amino acid (AA) bias for the 'x' positions in the motifs at the C-terminal ends. In general, hydrophilic AAs were favored. Our genomics-based findings confirm and largely extend the results of previous interaction-based studies, allowing us to propose refined consensus sequences for all of the examined PDZ-binding motifs. An ontological analysis revealed that the refined motifs are functionally relevant since a large fraction of the proteins bearing the motif appear to be involved in signal transduction. Furthermore, co-precipitation experiments confirmed two new protein interactions predicted by our genomics-based approach. Finally, we show that influenza virus pathogenicity can be correlated with PDZ-binding motif, with high-virulence viral proteins bearing a refined PDZ-binding motif.</p> <p>Conclusions</p> <p>Our refined definition of PDZ-binding motifs should provide important clues for identifying functional PDZ-binding motifs and proteins involved in signal transduction.</p

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    Serum ferritin concentration predicts mortality in patients awaiting liver transplantation

    No full text
    Additional markers are required to identify patients on the orthotopic liver transplant (OLT) waiting list at increased risk of death and adverse clinical events. Serum ferritin concentration is a marker of varied pathophysiological events and is elevated with increased liver iron concentration, hepatic necroinflammation, and systemic illness, all of which may cause a deterioration in liver function and clinical status. The aim of this study was to determine whether serum ferritin concentration is an independent prognostic factor in subjects awaiting OLT. This is a dual-center retrospective study. The study cohort consisted of 191 consecutive adults with cirrhosis accepted by the Queensland (Australia) Liver Transplant Service between January 2000 and June 2006 and a validation cohort of 131 patients from University of California Los Angeles (UCLA) Transplant Center. In the study cohort, baseline serum ferritin greater than 200 mu g/L was an independent factor predicting increased 180-day and 1-year waiting list mortality. This effect was independent of model for end-stage liver disease (MELD), hepatocellular carcinoma, age, and sex. Subjects with higher serum ferritin had increased frequency of liver-related clinical events. The relationship between serum ferritin and waiting list mortality was confirmed in the UCLA cohort; all deceased patients had serum ferritin greater than 400 mu g/L. Serum ferritin greater than 500 mu g/L and MELD were independent risk factors for death. Conclusion: Serum ferritin concentration is an independent predictor of mortality-related and liver-related clinical events. Baseline serum ferritin identifies a group of "higher-risk" patients awaiting OLT and should be investigated as an adjunct to MELD in organ allocation. (HEPATOLOGY 2010;51:1683-1691
    corecore