42 research outputs found
Conditional Transgenesis Using Dimerizable Cre (DiCre)
Cre recombinase is extensively used to engineer the genome of experimental animals. However, its usefulness is still limited by the lack of an efficient temporal control over its activity. We have recently developed a conceptually new approach to regulate Cre recombinase, that we have called Dimerizable Cre or DiCre. It is based on splitting Cre into two inactive moieties and fusing them to FKBP12 (FK506-binding protein) and FRB (binding domain of the FKBP12-rapamycin associated protein), respectively. These latter can be efficiently hetero-dimerized by rapamycin, leading to the reinstatement of Cre activity. We have been able to show, using in vitro approaches, that this ligand-induced dimerization is an efficient way to regulate Cre activity, and presents a low background activity together with a high efficiency of recombination following dimerization. To test the in vivo performance of this system, we have, in the present work, knocked-in DiCre into the Rosa26 locus of mice. To evaluate the performance of the DiCre system, mice have been mated with indicator mice (Z/EG or R26R) and Cre-induced recombination was examined following activation of DiCre by rapamycin during embryonic development or after birth of progenies. No recombination could be observed in the absence of treatment of the animals, indicating a lack of background activity of DiCre in the absence of rapamycin. Postnatal rapamycin treatment (one to five daily injection, 10 mg/kg i.p) induced recombination in a number of different tissues of progenies such as liver, heart, kidney, muscle, etc. On the other hand, recombination was at a very low level following in utero treatment of DiCre×R26R mice. In conclusion, DiCre has indeed the potentiality to be used to establish conditional Cre-deleter mice. An added advantage of this system is that, contrary to other modulatable Cre systems, it offers the possibility of obtaining regulated recombination in a combinatorial manner, i.e. induce recombination at any desired time-point specifically in cells characterized by the simultaneous expression of two different promoters
Feeding Induced by Cannabinoids Is Mediated Independently of the Melanocortin System
Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R)
antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central
neurocircuitry, specifically the melanocortin system that regulates energy balance
Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain
Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b
Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects
Functional and regulatory profiling of energy metabolism in fission yeast
Background: The control of energy metabolism is fundamental for cell growth and function and anomalies in it
are implicated in complex diseases and ageing. Metabolism in yeast cells can be manipulated by supplying
different carbon sources: yeast grown on glucose rapidly proliferates by fermentation, analogous to tumour cells
growing by aerobic glycolysis, whereas on non-fermentable carbon sources metabolism shifts towards respiration.
Results: We screened deletion libraries of fission yeast to identify over 200 genes required for respiratory growth.
Growth media and auxotrophic mutants strongly influenced respiratory metabolism. Most genes uncovered in the
mutant screens have not been implicated in respiration in budding yeast. We applied gene-expression profiling
approaches to compare steady-state fermentative and respiratory growth and to analyse the dynamic adaptation to
respiratory growth. The transcript levels of most genes functioning in energy metabolism pathways are coherently
tuned, reflecting anticipated differences in metabolic flows between fermenting and respiring cells. We show that
acetyl-CoA synthase, rather than citrate lyase, is essential for acetyl-CoA synthesis in fission yeast. We also investigated
the transcriptional response to mitochondrial damage by genetic or chemical perturbations, defining a retrograde
response that involves the concerted regulation of distinct groups of nuclear genes that may avert harm from
mitochondrial malfunction.
Conclusions: This study provides a rich framework of the genetic and regulatory basis of energy metabolism in fission
yeast and beyond, and it pinpoints weaknesses of commonly used auxotroph mutants for investigating metabolism. As
a model for cellular energy regulation, fission yeast provides an attractive and complementary system to budding yeast
Deductive Functional Assignment of Elements in Appetite Regulation
This paper presents a simple mathematical model for energy transport from the body into the brain and for appetite regulation. Particular properties in appetite regulation are deduced from the general observation of cyclic food intake. These particular properties are the importance of a push component, however small it may be, from the body into the brain, the dependence of the appetite activation on the energy supply level in the brain and a necessary condition for the sensitivity of this dependence. The dominant pull component in the energy transport is accompanied by a smaller push component managing this information transport. The properties listed above correspond to physiological observations. For instance, sensitivity is found in the postnatal development of projections between neuropeptide Y (NPY) neurons and pro-opiomelanocortin (POMC) neurons, which release, respectively, the appetite-amplifying and -reducing neuropeptides NPY and α-melanocyte-stimulating hormone at their nerve terminals. The development of these projections determines the change from the permanent feeding of the foetus into the cyclic ingestive behaviour in later life. The correspondence verifies the mathematically-deduced properties, justifies the simple model and supports the technique of the deductive functional assignment
Hypothalamic POMC neurons promote cannabinoid-induced feeding
Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases β-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids