87 research outputs found

    Cerenkov Radiation Energy Transfer (CRET) Imaging: A Novel Method for Optical Imaging of PET Isotopes in Biological Systems

    Get PDF
    Positron emission tomography (PET) allows sensitive, non-invasive analysis of the distribution of radiopharmaceutical tracers labeled with positron (β(+))-emitting radionuclides in small animals and humans. Upon β(+) decay, the initial velocity of high-energy β(+) particles can momentarily exceed the speed of light in tissue, producing Cerenkov radiation that is detectable by optical imaging, but is highly absorbed in living organisms.To improve optical imaging of Cerenkov radiation in biological systems, we demonstrate that Cerenkov radiation from decay of the PET isotopes (64)Cu and (18)F can be spectrally coupled by energy transfer to high Stokes-shift quantum nanoparticles (Qtracker705) to produce highly red-shifted photonic emissions. Efficient energy transfer was not detected with (99m)Tc, a predominantly γ-emitting isotope. Similar to bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET), herein we define the Cerenkov radiation energy transfer (CRET) ratio as the normalized quotient of light detected within a spectral window centered on the fluorophore emission divided by light detected within a spectral window of the Cerenkov radiation emission to quantify imaging signals. Optical images of solutions containing Qtracker705 nanoparticles and [(18)F]FDG showed CRET ratios in vitro as high as 8.8±1.1, while images of mice with subcutaneous pseudotumors impregnated with Qtracker705 following intravenous injection of [(18)F]FDG showed CRET ratios in vivo as high as 3.5±0.3.Quantitative CRET imaging may afford a variety of novel optical imaging applications and activation strategies for PET radiopharmaceuticals and other isotopes in biomaterials, tissues and live animals

    Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase

    Get PDF
    Background: Despite a plethora of bioluminescent reporter genes being cloned and used for cell assays and molecular imaging purposes, the simultaneous monitoring of multiple events in small animals is still challenging. This is partly attributable to the lack of optimization of cell reporter gene expression as well as too much spectral overlap of the colorcoupled reporter genes. A new red emitting codon-optimized luciferase reporter gene mutant of Photinus pyralis, Ppy RE8, has been developed and used in combination with the green click beetle luciferase, CBG99. Principal Findings: Human embryonic kidney cells (HEK293) were transfected with vectors that expressed red Ppy RE8 and green CBG99 luciferases. Populations of red and green emitting cells were mixed in different ratios. After addition of the shared single substrate, D-luciferin, bioluminescent (BL) signals were imaged with an ultrasensitive cooled CCD camera using a series of band pass filters (20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that expressed the two luciferases were injected at different depth in the animals. Spectrally-separate images and quantification of the dual BL signals in a mixed population of cells was achieved when cells were either injected subcutaneously or directly into the prostate. Significance: We report here the re-engineering of different luciferase genes for in vitro and in vivo dual color imaging applications to address the technical issues of using dual luciferases for imaging. In respect to previously used dual assays

    Alcohol consumption is associated with an increased risk of erosive esophagitis and Barrett's epithelium in Japanese men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence regarding the association between alcohol consumption and the gastro-esophageal reflux disease (GERD) spectrum has been conflicting. We examined the association between alcohol consumption and erosive esophagitis and Barrett's epithelium in Japanese men.</p> <p>Methods</p> <p>The study population comprised 463 men subjects who had undergone an upper endoscopy at the Gastroenterology Division of Yokohama City University Hospital between August 2005 and July 2006. The presence of erosive esophagitis and Barrett's epithelium was diagnosed based on the Los Angeles Classification and the Prague C and M Criteria, respectively. We divided the study population into four groups: never drinkers, light drinkers (less than 25.0 g of ethanol per day), moderate drinkers (25.0 to 50.0 g of ethanol per day), and heavy drinkers (more than 50.0 g of ethanol per day). A linear regression of the logistic regression analysis was used to analyze the dose-response trends.</p> <p>Results</p> <p>Compared with never drinkers, light drinkers (less than 25.0 g ethanol per day), moderate drinkers (25.0 to 50.0 g per day), and heavy drinkers (more than 50.0 g per day) had ORs for erosive esophagitis of 1.110 (95% CI: 0.553 – 2.228, p = 0.7688), 1.880 (95% CI: 1.015 – 3.484, p = 0.0445) and 1.988 (95% CI: 1.120 – 3.534, p = 0.0190), respectively. These groups had ORs for Barrett's epithelium of 1.278 (95% CI: 0.752 – 2.170, p = 0.3643), 1.458 (95% CI: 0.873 – 2.433, p = 0.1500), and 1.912 (95% CI: 1.185 – 3.086, p = 0.0079), respectively. The odds ratios/grams (alcohol)/day of dose response trends for erosive esophagitis and Barrett's epithelium were 1.015 (95% CI: 1.004–1.026, p = 0.0066) and 1.012 (95% CI: 1.003–1.021, p = 0.0079), respectively.</p> <p>Conclusion</p> <p>These findings suggest that alcohol consumption in Japanese men tends to be associated with an increased risk of erosive esophagitis and Barrett's epithelium.</p

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)
    corecore