5 research outputs found

    Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst

    Full text link
    The Norway spruce (Picea abies), the most important tree species in European forests, is relatively sensitive to salt and does not grow in natural saline environments. Yet many trees are actually exposed to salt stress due to the common practice of de-icing of mountain roads in winter, using large amounts of NaCl. To help develop strategies for an appropriate use of reproductive seed material on reforestation sites, ensuring better chances of seedling survival in salt-affected areas, we have studied the responses of young spruce seedlings to salt treatments. The specific aim of the work was to identify the optimal salt stress biomarkers in Picea abies, using as experimental material seedlings obtained by germination of seeds with origin in seven populations from the Romanian Carpathian Mountains. These responses included general, conserved reactions such as the accumulation of ions and different osmolytes in the seedlings needles, reduction in photosynthetic pigments levels, or activation of antioxidant systems. Although changes in the contents of different compounds involved in these reactions can be associated to the degree of stress affecting the plants, we propose that the (decreasing) levels of total phenolics or total carotenoids and the (increasing) levels of Na+ or K+ ions in Picea abies needles, should be considered as the most reliable and useful biomarkers for salt stress in this species. They all show very high correlation with the intensity of salt stress, independently of the genetic background of the seeds parental population, and relatively easy, quantitative assays are available to determine their concentrations, requiring simple equipment and little amount of plant material.Funding: Sorin Schiop is a PhD student at the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. This paper was published under the frame of European Social Found, Human Resources Development Operational Programme 2007-2013, project no. POSDRU/159/1.5/S/132765. Mohamad Al Hassan is a recipient of an Erasmus Mundus pre-doctoral scholarship financed by the European Commission (Welcome Consortium).Schiop, ST.; Al Hassan, M.; Sestras, AF.; Boscaiu Neagu, MT.; Sestras, RE.; Vicente Meana, Ó. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLoS ONE. 10(8). doi:10.1371/journal.pone.0135419Se013541910

    An atlas of over 90.000 conserved noncoding sequences provides insight into crucifer regulatory regions

    Get PDF
    Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species
    corecore