2,263 research outputs found

    Emergent Quantum Near-Criticality from Baryonic Black Branes

    Full text link
    We find new black 3-brane solutions describing the "conifold gauge theory" at nonzero temperature and baryonic chemical potential. Of particular interest is the low-temperature limit where we find a new kind of weakly curved near-horizon geometry; it is a warped product AdS_2 x R^3 x T^{1,1} with warp factors that are powers of the logarithm of the AdS radius. Thus, our solution encodes a new type of emergent quantum near-criticality. We carry out some stability checks for our solutions. We also set up a consistent ansatz for baryonic black 2-branes of M-theory that are asymptotic to AdS_4 x Q^{1,1,1}.Comment: 29 pages, 4 figures; v2 discussion of entropy revised, minor changes; v3 note added, minor improvements, version published in JHE

    Explosion Mechanisms of Core-Collapse Supernovae

    Full text link
    Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of ONeMg-core and some Fe-core progenitors. The characteristics of the neutrino emission from new-born neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from two to three dimensions, more realism, new perspectives, and hopefully answers to long-standing questions are coming into reach.Comment: 35 pages, 11 figures (29 eps files; high-quality versions can be obtained upon request); accepted by Annual Review of Nuclear and Particle Scienc

    On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes

    Full text link
    We study the phase structure and equilibrium state space geometry of R-charged black holes in D=5D = 5, 4 and 7 and the corresponding rotating D3D3, M2M2 and M5M5 branes. For various charge configurations of the compact black holes in the canonical ensemble we demonstrate new liquid-gas like phase coexistence behaviour culminating in second order critical points. The critical exponents turn out to be the same as that of four dimensional asymptotically AdS black holes in Einstein Maxwell theory. We further establish that the regions of stability for R-charged black holes are, in some cases, more constrained than is currently believed, due to properties of some of the response coefficients. The equilibrium state space scalar curvature is calculated for various charge configurations, both for the case of compact as well as flat horizons and its asymptotic behaviour with temperature is established.Comment: 1 + 33 pages, LaTeX, 25 figures. References adde

    Thermodynamics of string black hole with hyperscaling violation

    Get PDF
    In this paper, we start with black brane and construct specific space-time which violates hyperscaling. In order to obtain the string solution we apply Null-Melvin-Twist and KKKK-reduction. By using the difference action method we study thermodynamics of system to obtain Hawking-Page phase transition. In order to have hyperscaling violation we need to consider Ξ=d2.\theta=\frac{d}{2}. In that case the free energy FF is always negative and our solution is thermal radiation without a black hole. Therefore we find that there is not any Hawking-Page transition. Also, we discuss the stability of system and all thermodynamical quantities.Comment: 12 pages. Accepted for publication in EPJ

    Supersymmetric Charged Clouds in AdS_5

    Full text link
    We consider supersymmetric holographic flows that involve background gauge fields dual to chemical potentials in the boundary field theory. We use a consistent truncation of gauged N=8 supergravity in five dimensions and we give a complete analysis of the supersymmetry conditions for a large family of flows. We examine how the well-known supersymmetric flow between two fixed points is modified by the presence of the chemical potentials and this yields a new, completely smooth, solution that interpolates between two global AdS spaces of different radii and with different values of the chemical potential. We also examine some black-hole-like singular flows and a new non-supersymmetric black hole solution. We comment on the interpretation of our new solutions in terms of giant gravitons and discuss the implications of our work for finding black-hole solutions in AdS geometries.Comment: 31 pages, 6 figures; minor corrections, updated reference

    The particle number in Galilean holography

    Get PDF
    Recently, gravity duals for certain Galilean-invariant conformal field theories have been constructed. In this paper, we point out that the spectrum of the particle number operator in the examples found so far is not a necessary consequence of the existence of a gravity dual. We record some progress towards more realistic spectra. In particular, we construct bulk systems with asymptotic Schrodinger symmetry and only one extra dimension. In examples, we find solutions which describe these Schrodinger-symmetric systems at finite density. A lift to M-theory is used to resolve a curvature singularity. As a happy byproduct of this analysis, we realize a state which could be called a holographic Mott insulator.Comment: 29 pages, 1 rudimentary figure; v2: typo in eqn (3.4), added comments and ref

    Thermodynamics of Holographic Defects

    Full text link
    Using the AdS/CFT correspondence, we study the thermodynamic properties and the phase diagram of matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional N=4 SYM "heat bath". Considering a background magnetic field, (net) quark density, defect "magnitude" ÎŽNc\delta N_c and the mass of the matter, we study the defect contribution to the thermodynamic potentials and their first and second derivatives to map the phases and study their physical properties. We find some features that are qualitatively similar to other systems e.g. in (3+1) dimensions and a number of features that are particular to the defect nature, such as its magnetic properties, unexpected properties at T->0 and finite density; and the finite ÎŽNc\delta N_c effects, e.g. a diverging susceptibility and vanishing density of states at small temperatures, a physically consistent negative heat capacity and new types of consistent phases.Comment: 33 pages, 16 figures (jpg and pdf), typos fixed and references added, final version published in JHE

    Role of positron emission tomography-computed tomography in bronchial mucoepidermoid carcinomas: a case series and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Mucoepidermoid carcinoma of the tracheobronchial tree is rare. Such tumors usually present with signs and symptoms of bronchial obstruction. Histologically, they can be classified as high-grade or low-grade tumors. Experience of imaging these tumors with <sup>18</sup>fluorodeoxyglucose positron emission tomography-computed tomography (<sup>18</sup>F-FDG PET-CT) is limited. We present three cases of this rare tumor, describe the functional imaging results, and review the available literature.</p> <p>Case presentation</p> <p>Three Caucasian patients, two men (21 and 24 years of age) and one woman (14 years of age), with bronchial masses were evaluated by us. All three patients were symptomatic, and underwent a thorough clinical examination, bronchoscopy and biopsy, plain computed tomography, <sup>18</sup>F-FDG PET-CT and <sup>68</sup>Gallium 1,4,7,10-Tetraazacyclododecane-N<sup>I</sup>,N<sup>II</sup>,N<sup>III</sup>,N<sup>IIII</sup>,- tetra acetic acid (D) - Phel<sup>1</sup>-Tyr<sup>3</sup>-octreotide positron emission tomography-computed tomography (<sup>68</sup>Ga-DOTATOC PET-CT). <sup>18</sup>F-FDG PET-CT revealed mild uptake in all three patients, whereas <sup>68</sup>Ga-DOTATOC PET-CT revealed no significant uptake in any patient, making carcinoid tumor unlikely. Results of histopathological examination were consistent with low-grade mucoepidermoid carcinoma in all patients.</p> <p>Conclusion</p> <p>Our study reveals that functional imaging may be helpful in the initial investigation of patients with mucoepidermoid carcinoma. <sup>18</sup>F-FDG PET-CT may have a prognostic relevance by predicting the histopathologic differentiation of the tumor.</p

    Thermodynamics of Large N Gauge Theories with Chemical Potentials in a 1/D Expansion

    Full text link
    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1+D dimensional SU(N) Yang-Mills theory and we use a 1/D expansion to investigate the phase structure. We find three phases in the \mu-T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D \to \infty limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than 4, there is a critical chemical potential and the condensation happens only if the chemical potentials are below it.Comment: 37 pages, 4 figures; v2: minor corrections, references added; v3: minor corrections, to appear in JHE

    Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys

    Get PDF
    We transplanted kidneys from α1,3-galactosyltransferase knockout (GalT-KO) pigs into six baboons using two different immunosuppressive regimens, but most of the baboons died from severe acute humoral xenograft rejection. Circulating induced antibodies to non-Gal antigens were markedly elevated at rejection, which mediated strong complement-dependent cytotoxicity against GalT-KO porcine target cells. These data suggest that antibodies to non-Gal antigens will present an additional barrier to transplantation of organs from GalT-KO pigs to humans. © 2005 Nature Publishing Group
    • 

    corecore