116 research outputs found
Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega
High-statistics differential cross sections and spin density matrix elements
for the reaction gamma p -> p omega have been measured using the CLAS at
Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV.
Results are reported in 112 10-MeV wide CM energy bins, each subdivided into
cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega
photoproduction measurements to date. A number of prominent structures are
clearly present in the data. Many of these have not previously been observed
due to limited statistics in earlier measurements
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Photodisintegration of He into p+t
The two-body photodisintegration of He into a proton and a triton has
been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson
Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system
in the energy range from 0.35 to 1.55 GeV were incident on a liquid He
target. This is the first measurement of the photodisintegration of He
above 0.4 GeV. The differential cross sections for the He
reaction have been measured as a function of photon-beam energy and
proton-scattering angle, and are compared with the latest model calculations by
J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the
calculations that include three-body mechanisms, thus confirming their
importance. These results reinforce the conclusion of our previous study of the
three-body breakup of He that demonstrated the great importance of
three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22
postscrip figure
photoproduction on the proton for photon energies from 0.725 to 2.875 GeV
Differential cross sections for the reaction have been
measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged
photon beam with energies from 0.725 to 2.875 GeV. Where available, the results
obtained here compare well with previously published results for the reaction.
Agreement with the SAID and MAID analyses is found below 1 GeV. The present set
of cross sections has been incorporated into the SAID database, and exploratory
fits have been made up to 2.7 GeV. Resonance couplings have been extracted and
compared to previous determinations. With the addition of these cross sections
to the world data set, significant changes have occurred in the high-energy
behavior of the SAID cross-section predictions and amplitudes.Comment: 18 pages, 10 figure
photoproduction on the proton for photon energies from 0.675 to 2.875 GeV
Differential cross sections for the reaction have been
measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged
photon beam with energies from 0.675 to 2.875 GeV. The results reported here
possess greater accuracy in the absolute normalization than previous
measurements. They disagree with recent CB-ELSA measurements for the process at
forward scattering angles. Agreement with the SAID and MAID fits is found below
1 GeV. The present set of cross sections has been incorporated into the SAID
database, and exploratory fits have been extended to 3 GeV. Resonance couplings
have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure
First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction
Spin transfer from circularly polarized real photons to recoiling hyperons
has been measured for the reactions and
. The data were obtained using the CLAS
detector at Jefferson Lab for center-of-mass energies between 1.6 and 2.53
GeV, and for . For the , the
polarization transfer coefficient along the photon momentum axis, , was
found to be near unity for a wide range of energy and kaon production angles.
The associated transverse polarization coefficient, , is smaller than
by a roughly constant difference of unity. Most significantly, the {\it
total} polarization vector, including the induced polarization ,
has magnitude consistent with unity at all measured energies and production
angles when the beam is fully polarized. For the this simple
phenomenology does not hold. All existing hadrodynamic models are in poor
agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review
Heparan sulfate proteoglycans: structure, protein interactions and cell signaling
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.Proteoglicanos de heparam sulfato são encontrados tanto superfície celular quanto na matriz extracelular em todas as espécies animais. Esta revisão tem enfoque nas características estruturais dos proteoglicanos de heparam sulfato e nas interações destes proteoglicanos com proteínas que levam à sinalização celular. As cadeias de heparam sulfato, devido a sua variedade estrutural, são capazes de se ligar e interagir com ampla gama de proteínas, como fatores de crescimento, quimiocinas, morfógenos, componentes da matriz extracelular, enzimas, entreoutros. Existe uma especificidade estrutural que direciona as interações dos heparam sulfatos e proteínas alvo. Esta especificidade está relacionada com a estrutura da cadeia do polissacarídeo e os motivos conservados da cadeia polipeptídica das proteínas envolvidas nesta interação. Os heparam sulfatos possuem papel na sinalização celular como receptores ou coreceptores para diferentes ligantes. Esta ligação dispara vias de sinalização celular levam à fosforilação de diversas proteínas citosólicas ou com ou sem interações diretas com o citoesqueleto, culminando na regulação gênica. O papel dos proteoglicanos de heparam sulfato na sinalização celular e vias de captação endocítica também são discutidas nesta revisão.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo (UNIFESP) Departamento de BioquímicaUniversidade Federal de São Paulo (UNIFESP) Departamento de OftalmologiaUNIFESP, Depto. de BioquímicaUNIFESP, Depto. de OftalmologiaSciEL
SRG/ART-XC discovery of SRGA J204318.2+443815: Towards the complete population of faint X-ray pulsars
We report the discovery of the new long-period X-ray pulsar SRGA J204318.2+443815/SRGe J204319.0+443820 in a Be binary system. The source was found in the second all-sky survey by the Mikhail Pavlinsky ART-XC telescope on board the SRG mission. The followup observations with XMM-Newton, NICER, and NuSTAR allowed us to discover a strong coherent signal in the source light curve with a period of ~742 s. The pulsed fraction was found to depend on an increase in energy from ~20% in soft X-rays to >50% at high energies, as is typical for X-ray pulsars. The source has a quite hard spectrum with an exponential cutoff at high energies and a bolometric luminosity of Lx ≃ 4 x 1035 erg s-1. The X-ray position of the source is found to be consistent with the optical transient ZTF18abjpmzf, located at a distance of ~8.0 kpc. Dedicated optical and infrared observations with the RTT-150, NOT, Keck, and Palomar telescopes revealed a number of emission lines (Hα, He I, and the Paschen and Braket series) with a strongly absorbed continuum. According to the SRG scans and archival XMM-Newton data, the source flux is moderately variable (by a factor of 4-10) on timescales of several months and years. All this suggests that SRGA J204318.2+443815/SRGe J204319.0+443820 is a new quasipersistent low-luminosity X-ray pulsar in a distant binary system with a Be-star of the B0-B2e class. Thus the SRG observatory allowed us to unveil a hidden population of faint objects, including a population of slowly rotating X-ray pulsars in Be systems.</p
Biogenic and Synthetic Polyamines Bind Cationic Dendrimers
Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues
Beam-Recoil Polarization Transfer in the Nucleon Resonance Region in the Exclusive and Reactions at CLAS
Beam-recoil transferred polarizations for the exclusive reactions have been measured using the CLAS
spectrometer at Jefferson Laboratory. New measurements have been completed at
beam energies of 4.261 and 5.754 GeV that span a range of momentum transfer
from 0.7 to 5.4 GeV, invariant energy from 1.6 to 2.6 GeV, and
the full center-of-mass angular range of the meson. These new data add to
the existing CLAS measurements at 2.567 GeV, and provide the
first-ever data for the channel in electroproduction. Comparisons
of the data with several theoretical models are used to study the sensitivity
to s-channel resonance contributions and the underlying reaction mechanism.
Interpretations within two semi-classical partonic models are made to probe the
underlying reaction mechanism and the quark-pair creation dynamics.Comment: 48 pages, 22 figure
- …
