2,869 research outputs found

    Ulnar dimelia variant: a case report

    Get PDF
    We report a case of ulnar dimelia, commonly called mirror hand, in a 2-month-old female child who had restriction of elbow flexion and forearm rotation. There was no facial or other internal organ malformation. Radiographs revealed seven triphalangeal digits with double ulnae (one following the other) and absent radius. To the best of the authors’ knowledge, this is the first report of this mirror hand deformity in which fingers are symmetrical while duplicated ulnae are not

    Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    Full text link
    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss the proper implementation of the QED axial anomaly, the (ambiguous) definition of chiral currents, and the calculation of the chiral magnetic effect. We show that this model correctly contains the so-called consistent anomaly, but requires the introduction of a (holographic) finite counterterm to yield the correct covariant anomaly. Introducing net chirality through an axial chemical potential, we find a nonvanishing vector current only before including this counterterm. This seems to imply the absence of the chiral magnetic effect in this model. On the other hand, for a conventional quark chemical potential and large magnetic field, which is of interest in the physics of compact stars, we obtain a nontrivial result for the axial current that is in agreement with previous calculations and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent conductivity at the end of section 4; references added; version to appear in JHE

    Inverse magnetic catalysis in dense holographic matter

    Full text link
    We study the chiral phase transition in a magnetic field at finite temperature and chemical potential within the Sakai-Sugimoto model, a holographic top-down approach to (large-N_c) QCD. We consider the limit of a small separation of the flavor D8-branes, which corresponds to a dual field theory comparable to a Nambu-Jona Lasinio (NJL) model. Mapping out the surface of the chiral phase transition in the parameter space of magnetic field strength, quark chemical potential, and temperature, we find that for small temperatures the addition of a magnetic field decreases the critical chemical potential for chiral symmetry restoration - in contrast to the case of vanishing chemical potential where, in accordance with the familiar phenomenon of magnetic catalysis, the magnetic field favors the chirally broken phase. This "inverse magnetic catalysis" (IMC) appears to be associated with a previously found magnetic phase transition within the chirally symmetric phase that shows an intriguing similarity to a transition into the lowest Landau level. We estimate IMC to persist up to 10^{19} G at low temperatures.Comment: 42 pages, 11 figures, v3: extended discussion; new appendix D; references added; version to appear in JHE

    Common-path interferometric label-free protein sensing with resonant dielectric nanostructures

    Get PDF
    Research toward photonic biosensors for point-of-care applications and personalized medicine is driven by the need for high-sensitivity, low-cost, and reliable technology. Among the most sensitive modalities, interferometry offers particularly high performance, but typically lacks the required operational simplicity and robustness. Here, we introduce a common-path interferometric sensor based on guided-mode resonances to combine high performance with inherent stability. The sensor exploits the simultaneous excitation of two orthogonally polarized modes, and detects the relative phase change caused by biomolecular binding on the sensor surface. The wide dynamic range of the sensor, which is essential for fabrication and angle tolerance, as well as versatility, is controlled by integrating multiple, tuned structures in the field of view. This approach circumvents the trade-off between sensitivity and dynamic range, typical of other phase-sensitive modalities, without increasing complexity. Our sensor enables the challenging label-free detection of procalcitonin, a small protein (13 kDa) and biomarker for infection, at the clinically relevant concentration of 1 pg mL−1, with a signal-to-noise ratio of 35. This result indicates the utility for an exemplary application in antibiotic guidance, and opens possibilities for detecting further clinically or environmentally relevant small molecules with an intrinsically simple and robust sensing modality

    Bid can mediate a pro-apoptotic response to etoposide and ionizing radiation without cleavage in its unstructured loop and in the absence of p53

    Get PDF
    BH3-only protein Bid is a key player in death receptor-induced apoptosis, because it provides the link with the mitochondrial route for caspase activation. In this pathway, Bid is activated upon cleavage by caspase-8. Its BH3 domain-containing carboxy-terminal fragment subsequently provokes mitochondrial outer membrane permeabilization by Bak/Bax activation. Bid has also been implicated in the apoptotic response to ionizing radiation (IR) and the topoisomerase inhibitor etoposide, anti-cancer regimens that cause double-strand (ds)DNA breaks. We confirm the existence of this pathway and show that it is p53-independent. However, the degree of Bid participation in the apoptotic response to dsDNA breaks depends on the nature of cell transformation. We used Bid-deficient mouse embryonic fibroblast (MEF) lines that were reconstituted with Bid to control the cellular background and demonstrated that the Bid-dependent apoptotic pathway induced by IR and etoposide operates in MEFs that are transformed by SV40, but is not evident in E1A/Ras-transformed MEFs. The Bid-dependent apoptotic response in p53-deficient SV40-transformed MEFs contributed to clonogenic execution of the cells, implying relevance for treatment outcome. In these cells, Bid acted in a conventional manner in that it required its BH3 domain to mediate apoptosis in response to IR and etoposide, and triggered apoptotic execution by indirect activation of Bak/Bax, mitochondrial permeabilization and caspase-9 activation. However, the mechanism of Bid activation was unconventional, because elimination of all known or suspected cleavage sites for caspases or other proteolytic enzymes and even complete elimination of its unstructured cleavage loop left Bid's pro-apoptotic role in the response to IR and etoposide unaffected

    Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes

    Get PDF
    The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis

    A general lithography-free method of microscale/nanoscale fabrication and patterning on Si and Ge surfaces

    Get PDF
    Here, we introduce and give an overview of a general lithography-free method to fabricate silicide and germanide micro-/nanostructures on Si and Ge surfaces through metal-vapor-initiated endoepitaxial growth. Excellent controls on shape and orientation are achieved by adjusting the substrate orientation and growth parameters. Furthermore, micro-/nanoscale pits with controlled morphologies can also be successfully fabricated on Si and Ge surfaces by taking advantage of the sublimation of silicides/germanides. The aim of this brief report is to illustrate the concept of lithography-free synthesis and patterning on surfaces of elemental semiconductors, and the differences and the challenges associated with the Si and the Ge surfaces will be discussed. Our results suggest that this low-cost bottom-up approach is promising for applications in functional nanodevices
    corecore