188 research outputs found
Clocinnamox antagonism of opioid suppression of schedule-controlled responding in rhesus monkeys
The antagonist effects of clocinnamox were evaluated against opioid agonists, acting at μ, κ and ∂-receptors, in rhesus monkeys ( n =3–4) responding under a fixed-ratio 30 (FR 30) schedule for food delivery. Clocinnamox (0.032–0.1 mg/kg) dose-dependently antagonized fentanyl (0.001–0.32 mg/kg) after either a 3-h or 1-day pretreatment; there was substantial recovery of agonist potency by 1 week after clocinnamox. Etonitazene (0.0001–0.01 mg/kg) was also antagonized by clocinnamox (0.1 mg/kg), but to a lesser extent than fentanyl. The smaller extent of antagonism was not due to the appearance of non μ-opioid response-decreasing effects of etonitazene, since the competitive antagonist quadazocine (0.1 mg/kg) shifted the etonitazene dose-effect curve in the presence of clocinnamox (0.1 mg/kg). Clocinnamox (0.1–0.32 mg/kg) did not antagonize the rate-suppressing effects of the ∂-agonist BW373U86 (0.0.01-1.0 mg/kg) or the κ-agonist U69,593 (0.001–0.032 mg/kg). These results are consistent with previous in vivo and in vitro evidence that characterized clocinnamox as an insurmountable antagonist, with selectivity for μ-over κ- and δ-receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46352/1/213_2005_Article_BF02246641.pd
(-)-Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice
<p>Abstract</p> <p>Background</p> <p>(-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) mice.</p> <p>Results</p> <p>(-)-Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (-)-pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (-)-pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. <it>In vitro </it>binding and cyclic adenosine monophosphate assays showed that (-)-pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors.</p> <p>Conclusions</p> <p>The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (-)-pentazocine and retention of the visceral chemical antinociceptive effects of (-)-pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (-)-pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (-)-pentazocine.</p
Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking
Rationale
GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine.
Objective
We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure.
Methods
α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg).
Results
No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not.
Conclusions
Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking
Cocaine Is Low on the Value Ladder of Rats: Possible Evidence for Resilience to Addiction
International audienceBACKGROUND:Assessing the relative value of cocaine and how it changes with chronic drug use represents a long-standing goal in addiction research. Surprisingly, recent experiments in rats--by far the most frequently used animal model in this field--suggest that the value of cocaine is lower than previously thought.METHODOLOGY/PRINCIPAL FINDINGS:Here we report a series of choice experiments that better define the relative position of cocaine on the value ladder of rats (i.e., preference rank-ordering of different rewards). Rats were allowed to choose either taking cocaine or drinking water sweetened with saccharin--a nondrug alternative that is not biologically essential. By systematically varying the cost and concentration of sweet water, we found that cocaine is low on the value ladder of the large majority of rats, near the lowest concentrations of sweet water. In addition, a retrospective analysis of all experiments over the past 5 years revealed that no matter how heavy was past cocaine use most rats readily give up cocaine use in favor of the nondrug alternative. Only a minority, fewer than 15% at the heaviest level of past cocaine use, continued to take cocaine, even when hungry and offered a natural sugar that could relieve their need of calories.CONCLUSIONS/SIGNIFICANCE:This pattern of results (cocaine abstinence in most rats; cocaine preference in few rats) maps well onto the epidemiology of human cocaine addiction and suggests that only a minority of rats would be vulnerable to cocaine addiction while the large majority would be resilient despite extensive drug use. Resilience to drug addiction has long been suspected in humans but could not be firmly established, mostly because it is difficult to control retrospectively for differences in drug self-exposure and/or availability in human drug users. This conclusion has important implications for preclinical research on the neurobiology of cocaine addiction and for future medication development
Augmented acquisition of cocaine self-administration and altered brain glucose metabolism in adult female but not male rats exposed to a cannabinoid agonist during adolescence
Marijuana consumption during adolescence has been proposed to be a stepping stone for adult cocaine addiction. However, experimental evidence for this hypothesis is missing. In this work we chronically injected male and female Wistar rats with either the
cannabinoid agonist CP 55,940 (CP; 0.4 mg/kg) or its corresponding vehicle. Adult acquisition (seven 30 min daily sessions) and
maintenance (fourteen 2 h daily sessions) of cocaine self administration (1 mg/kg), food reinforced operant learning under conditions of
normal (ad libitum access to food), and high motivation (food restriction schedule) were measured. Additionally, brain metabolic activity
was analyzed by means of [18F] fluorodeoxyglucose positron emission tomography. During the acquisition phase, female CP treated rats
showed a higher rate of cocaine self administration as compared to vehicle treated females and males; no differences were found
between both male groups. This effect disappeared in the maintenance phase. Moreover, no differences among groups were evident in
the food reinforced operant task, pointing to the cocaine specific nature of the effect seen in self administration rather than a general
change in reward processing. Basal brain metabolic activity also changed in CP treated females when compared to their vehicle treated
counterparts with no differences being found in the males; more specifically we observed a hyper activation of the frontal cortex and a
hypo activation of the amygdalo entorhinal cortex. Our results suggest that a chronic exposure to cannabinoids during adolescence alters
the susceptibility to acquire cocaine self administration, in a sex specific fashion. This increased susceptibility could be related to thechanges in brain metabolic activity induced by cannabinoids during adolescenceThis work was supported by Grants FIS G03/05 (Red de Trastornos Adictivos), BSO2001-1099, FIS 01-05-01, Plan Nacional sobre Drogas (PNSD) 2001–2003, PNSD 2004–2007, GR-SAL/0260/2004 to EA and Grants INT/2012/ 2002, CB06/01/0079, and CENIT (2006–2009) to MDPublicad
Shaping Skeletal Growth by Modular Regulatory Elements in the Bmp5 Gene
Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body
Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats
Delta-opioid agonists produce a number of behavioral effects, including convulsions, antinociception, locomotor stimulation, and antidepressant-like effects. The development of these compounds as treatments for depression is limited by their convulsive effects. Therefore, determining how to separate the convulsive and antidepressant-like characteristics of these compounds is essential for their potential clinical use.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46370/1/213_2005_Article_138.pd
Differential effects of systemically administered nor-binaltorphimine (nor-BNI) on κ-opioid agonists in the mouse writhing assay
The opioid antagonist effects of systemically administered nor-binaltorphimine (nor-BNI) were evaluated against the kappa agonists CI-977, U69,593, U50,488, ethylketocyclazocine (EKC), Mr2034 and bremazocine, the mu agonist morphine and the alkaloid delta agonist BW-373U86 in the acetic acid-induced writhing assay in mice. All eight agonists completely and dose-dependently inhibited writhing. Antagonism of CI-977 was apparent 1 h after administration of 32 mg/kg nor-BNI, peaking after 4 h and was maintained for at least 4 weeks; no antagonist effects of nor-BNI were apparent after 8 weeks. Nor-BNI (32 mg/kg) caused little or no antagonism of morphine or BW-373U86 at 1 h and none at 24 h after nor-BNI administration. Subsequently, dose-effect curves for CI-977, U50,488, U69,593, EKC, Mr2034 and bremazocine were determined 24 h after pretreatment with 3.2, 10 and 32 mg/kg nor-BNI. Pretreatment with 3.2 mg/kg nor-BNI produced significant antagonism of all six kappa agonists, suggesting that their antinociceptive effects were mediated at least in part by nor-BNI-sensitive kappa receptors. At higher doses, nor-BNI dose-depend-ently shifted the agonist dose-effect curves of CI-977, U50,488, U69,593 and bremazocine, but not those of EKC and Mr2034, suggesting that the latter compounds may be producing effects via nor-BNI-insensitive receptors. Mu receptor involvement was demonstrated following a 24 h pretreatment with 32 mg/kg β -FNA in combination with nor-BNI, which significantly increased the degree of antagonism of Mr2034 and EKC from that seen with nor-BNI alone. Hence, SC administered nor-BNI selectively antagonized agonist activity mediated through kappaopioid receptors without differentiating between kappa subtypes. Nor-BNI also enabled the mu agonist activity of proposed kappa agonists to be measured.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46343/1/213_2005_Article_BF02245071.pd
- …