2,148 research outputs found

    Stellar spectroscopy: Fermions and holographic Lifshitz criticality

    Full text link
    Electron stars are fluids of charged fermions in Anti-de Sitter spacetime. They are candidate holographic duals for gauge theories at finite charge density and exhibit emergent Lifshitz scaling at low energies. This paper computes in detail the field theory Green's function G^R(w,k) of the gauge-invariant fermionic operators making up the star. The Green's function contains a large number of closely spaced Fermi surfaces, the volumes of which add up to the total charge density in accordance with the Luttinger count. Excitations of the Fermi surfaces are long lived for w <~ k^z. Beyond w ~ k^z the fermionic quasiparticles dissipate strongly into the critical Lifshitz sector. Fermions near this critical dispersion relation give interesting contributions to the optical conductivity.Comment: 38 pages + appendices. 9 figure

    Photoemission "experiments" on holographic superconductors

    Get PDF
    We study the effects of a superconducting condensate on holographic Fermi surfaces. With a suitable coupling between the fermion and the condensate, there are stable quasiparticles with a gap. We find some similarities with the phenomenology of the cuprates: in systems whose normal state is a non-Fermi liquid with no stable quasiparticles, a stable quasiparticle peak appears in the condensed phase.Comment: 14 pages, 13 figures; v2: typos corrected and some clarification adde

    Charged, conformal non-relativistic hydrodynamics

    Full text link
    We embed a holographic model of an U(1) charged fluid with Galilean invariance in string theory and calculate its specific heat capacity and Prandtl number. Such theories are generated by a R-symmetry twist along a null direction of a N=1 superconformal theory. We study the hydrodynamic properties of such systems employing ideas from the fluid-gravity correspondence.Comment: 31 pages, 1 figure, JHEP3 style, refs added, typos corrected, missing terms in spatial charge current and field corrections added, to be published in JHE

    Even denominator fractional quantum Hall states in higher Landau levels of graphene

    Full text link
    An important development in the field of the fractional quantum Hall effect has been the proposal that the 5/2 state observed in the Landau level with orbital index n=1n = 1 of two dimensional electrons in a GaAs quantum well originates from a chiral pp-wave paired state of composite fermions which are topological bound states of electrons and quantized vortices. This state is theoretically described by a "Pfaffian" wave function or its hole partner called the anti-Pfaffian, whose excitations are neither fermions nor bosons but Majorana quasiparticles obeying non-Abelian braid statistics. This has inspired ideas on fault-tolerant topological quantum computation and has also instigated a search for other states with exotic quasiparticles. Here we report experiments on monolayer graphene that show clear evidence for unexpected even-denominator fractional quantum Hall physics in the n=3n=3 Landau level. We numerically investigate the known candidate states for the even-denominator fractional quantum Hall effect, including the Pfaffian, the particle-hole symmetric Pfaffian, and the 221-parton states, and conclude that, among these, the 221-parton appears a potentially suitable candidate to describe the experimentally observed state. Like the Pfaffian, this state is believed to harbour quasi-particles with non-Abelian braid statistic

    Multiplicity Distributions and Charged-neutral Fluctuations

    Get PDF
    Results from the multiplicity distributions of inclusive photons and charged particles, scaling of particle multiplicities, event-by-event multiplicity fluctuations, and charged-neutral fluctuations in 158A\cdot A GeV Pb+Pb collisions are presented and discussed. A scaling of charged particle multiplicity as Npart1.07±0.05N_{part}^{1.07\pm 0.05} and photons as Npart1.12±0.03N_{part}^{1.12\pm 0.03} have been observed, indicating violation of naive wounded nucleon model. The analysis of localized charged-neutral fluctuation indicates a model-independent demonstration of non-statistical fluctuations in both charged particles and photons in limited azimuthal regions. However, no correlated charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics (ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in Pramana, Journal of Physic

    Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV

    Full text link
    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y|<0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.Comment: 4 pages, 3 figures, 1 table, submitted to PR

    Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management.

    Get PDF
    Purpose Unexpected fetal abnormalities occur in 2-5% of pregnancies. While traditional cytogenetic and microarray approaches achieve diagnosis in around 40% of cases, lack of diagnosis in others impedes parental counseling, informed decision making, and pregnancy management. Postnatally exome sequencing yields high diagnostic rates, but relies on careful phenotyping to interpret genotype results. Here we used a multidisciplinary approach to explore the utility of rapid fetal exome sequencing for prenatal diagnosis using skeletal dysplasias as an exemplar. Methods Parents in pregnancies undergoing invasive testing because of sonographic fetal abnormalities, where multidisciplinary review considered skeletal dysplasia a likely etiology, were consented for exome trio sequencing (both parents and fetus). Variant interpretation focused on a virtual panel of 240 genes known to cause skeletal dysplasias. Results Definitive molecular diagnosis was made in 13/16 (81%) cases. In some cases, fetal ultrasound findings alone were of sufficient severity for parents to opt for termination. In others, molecular diagnosis informed accurate prediction of outcome, improved parental counseling, and enabled parents to terminate or continue the pregnancy with certainty. Conclusion Trio sequencing with expert multidisciplinary review for case selection and data interpretation yields timely, high diagnostic rates in fetuses presenting with unexpected skeletal abnormalities. This improves parental counseling and pregnancy management.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2018.30

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Scalar-field Pressure in Induced Gravity with Higgs Potential and Dark Matter

    Full text link
    A model of induced gravity with a Higgs potential is investigated in detail in view of the pressure components related to the scalar-field excitations. The physical consequences emerging as an artifact due to the presence of these pressure terms are analysed in terms of the constraints parting from energy density, solar-relativistic effects and galactic dynamics along with the dark matter halos.Comment: 26 pages, 3 figures, Minor revision, Published in JHE

    Multiview classification and dimensionality reduction of scalp and intracranial EEG data through tensor factorisation

    Get PDF
    Electroencephalography (EEG) signals arise as a mixture of various neural processes that occur in different spatial, frequency and temporal locations. In classification paradigms, algorithms are developed that can distinguish between these processes. In this work, we apply tensor factorisation to a set of EEG data from a group of epileptic patients and factorise the data into three modes; space, time and frequency with each mode containing a number of components or signatures. We train separate classifiers on various feature sets corresponding to complementary combinations of those modes and components and test the classification accuracy of each set. The relative influence on the classification accuracy of the respective spatial, temporal or frequency signatures can then be analysed and useful interpretations can be made. Additionaly, we show that through tensor factorisation we can perform dimensionality reduction by evaluating the classification performance with regards to the number mode components and by rejecting components with insignificant contribution to the classification accuracy
    corecore