10,774 research outputs found
Casimir Effect for the Piecewise Uniform String
The Casimir energy for the transverse oscillations of a piecewise uniform
closed string is calculated. In its simplest version the string consists of two
parts I and II having in general different tension and mass density, but is
always obeying the condition that the velocity of sound is equal to the
velocity of light. The model, first introduced by Brevik and Nielsen in 1990,
possesses attractive formal properties implying that it becomes easily
regularizable by several methods, the most powerful one being the contour
integration method. We also consider the case where the string is divided into
2N pieces, of alternating type-I and type-II material. The free energy at
finite temperature, as well as the Hagedorn temperature, are found. Finally, we
make some remarks on the relationship between this kind of theory and the
theory of quantum star graphs, recently considered by Fulling et al.Comment: 10 pages, 1 figure, Submitted to the volume "Cosmology, Quantum
Vacuum, and Zeta Functions", in honour of Professor Emilio Elizalde on the
occasion of his 60th birthda
Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels
To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance
Epithelial–mesenchymal transition is driven by transcriptional and post transcriptional modulations in copd: Implications for disease progression and new therapeutics
© 2019 Eapen et al. COPD is a common and highly destructive disease with huge impacts on people and health services throughout the world. It is mainly caused by cigarette smoking though environmental pollution is also significant. There are no current treatments that affect the overall course of COPD; current drugs focus on symptomatic relief and to some extent reducing exacerbation rates. There is an urgent need for in-depth studies of the fundamental pathogenic mechanisms that underpin COPD. This is vital, given the fact that nearly 40%– 60% of the small airway and alveolar damage occurs in COPD well before the first measurable changes in lung function are detected. These individuals are also at a high risk of lung cancer. Current COPD research is mostly centered around late disease and/or innate immune activation within the airway lumen, but the actual damage to the airway wall has early onset. COPD is the end result of complex mechanisms, possibly triggered through initial epithelial activation. To change the disease trajectory, it is crucial to understand the mechanisms in the epithelium that are switched on early in smokers. One such mechanism we believe is the process of epithelial to mesenchymal transition. This article highlights the importance of this profound epithelial cell plasticity in COPD and also its regulation. We consider that understanding early changes in COPD will open new windows for therapy
Jammed Disks of Two Sizes in a Narrow Channel
A granular-matter model is exactly solved, where disks of two sizes and weights in alternating sequence are confined to a narrow channel. The axis of the channel is horizontal and its plane vertical. Disk sizes and channel width are such that under jamming no disks remain loose and all disks touch one wall. Jammed microstates are characterized via statistically interacting particles constructed out of two-disk tiles. Jammed macrostates depend on measures of expansion work, gravitational potential energy, and intensity of random agitations before jamming. The dependence of configurational entropy on excess volume exhibits a critical point
A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study
© 2015 Elsevier B.V. A breakthrough biosorbent namely multi-metal binding biosorbent (MMBB) made from a combination of tea wastes, maple leaves and mandarin peels, was prepared to evaluate their biosorptive potential for removal of Cd(II), Cu(II), Pb(II) and Zn(II) from multi-metal aqueous solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic, hydroxyl and amine groups were found to be the principal functional groups for the sorption of metals. MMBB exhibited best performance at pH. 5.5 with maximum sorption capacities of 31.73, 41.06, 76.25 and 26.63. mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Pseudo-first and pseudo-second-order models represented the kinetic experimental data in different initial metal concentrations very well. Among two-parameter adsorption isotherm models, the Langmuir equation gave a better fit of the equilibrium data. For Cu(II) and Zn(II), the Khan isotherm describes better biosorption conditions while for Cd(II) and Pb(II), the Sips model was found to provide the best correlation of the biosorption equilibrium data. The calculated thermodynamic parameters indicated feasible, spontaneous and exothermic biosorption process. Overall, this novel MMBB can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions
Non-extremal black holes from the generalised r-map
We review the timelike dimensional reduction of a class of five-dimensional
theories that generalises 5D, N = 2 supergravity coupled to vector multiplets.
As an application we construct instanton solutions to the four-dimensional
Euclidean theory, and investigate the criteria for solutions to lift to static
non-extremal black holes in five dimensions.
We focus specifically on two classes of models: STU-like models, and models
with a block diagonal target space metric. For STU-like models the second order
equations of motion of the four-dimensional theory can be solved explicitly,
and we obtain the general solution. For block diagonal models we find a
restricted class of solutions, where the number of independent scalar fields
depends on the number of blocks. When lifting these solutions to five
dimensions we show, by explicit calculation, that one obtains static
non-extremal black holes with scalar fields that take finite values on the
horizon only if the number of integration constants reduces by exactly half.Comment: 22 pages. Based on talk by OV at "Black Objects in Supergravity
School" (BOSS2011), INFN, Frascati, Italy, 9-13 May, 201
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
Phase transitions and critical behavior of black branes in canonical ensemble
We study the thermodynamics and phase structure of asymptotically flat
non-dilatonic as well as dilatonic black branes in a cavity in arbitrary
dimensions (). We consider the canonical ensemble and so the charge inside
the cavity and the temperature at the wall are fixed. We analyze the stability
of the black brane equilibrium states and derive the phase structures. For the
zero charge case we find an analog of Hawking-Page phase transition for these
black branes in arbitrary dimensions. When the charge is non-zero, we find that
below a critical value of the charge, the phase diagram has a line of
first-order phase transition in a certain range of temperatures which ends up
at a second order phase transition point (critical point) as the charge attains
the critical value. We calculate the critical exponents at that critical point.
Although our discussion is mainly concerned with the non-dilatonic branes, we
show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action
discussed, references adde
Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/β-catenin signalling pathway
Objectives: Interaction between neoplastic and stromal cells plays an important role in tumour progression. It was recently found that WNT2 was frequently overexpressed in fibroblasts isolated from tumour tissue tumour fibroblasts (TF) compared with fibroblasts from non-tumour tissue normal fibroblasts in oesophageal squamous cell carcinoma (OSCC). This study aimed to investigate the effect of TF-secreted Wnt2 in OSCC development via the tumour - stroma interaction. Methods: Quantitative PCR, western blotting, immunohistochemistry and immunofluorescence were used to study the expression pattern of Wnt2 and its effect on the Wnt/β-catenin pathway. A Wnt2-secreting system was established in Chinese hamster ovary cells and its conditioned medium was used to study the role of Wnt2 in cell proliferation and invasion. Results: Expression of Wnt2 could only be detected in TF but not in OSCC cancer cell lines. In OSCC tissues, Wnt2 (+) cells were mainly detected in the boundary between stroma and tumour tissue or scattered within tumour tissue. In this study, Wnt2-positive OSCC was defined when five or more Wnt2(+) cells were observed in 2003X microscopy field. Interestingly, Wnt2-positive OSCC (22/51 cases) was significantly associated with lymph node metastases (p=0.001), advanced TNM stage (p=0.001) and disease-specific survival (p<0.0001). Functional study demonstrated that secreted Wnt2 could promote oesophageal cancer cell growth by activating the Wnt/β-catenin signalling pathway and subsequently upregulated cyclin D1 and c-myc expression. Further study found that Wnt2 could enhance cell motility and invasiveness by inducing epithelial-mesenchymal transition. Conclusions: TF-secreted Wnt2 acts as a growth and invasion-promoting factor through activating the canonical Wnt/β-catenin signalling pathway in oesophageal cancer cells.published_or_final_versio
Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO/SrTiO Interfaces
A two dimensional electronic system with novel electronic properties forms at
the interface between the insulators LaAlO and SrTiO. Samples
fabricated until now have been found to be either magnetic or superconducting,
depending on growth conditions. We combine transport measurements with
high-resolution magnetic torque magnetometry and report here evidence of
magnetic ordering of the two-dimensional electron liquid at the interface. The
magnetic ordering exists from well below the superconducting transition to up
to 200 K, and is characterized by an in-plane magnetic moment. Our results
suggest that there is either phase separation or coexistence between magnetic
and superconducting states. The coexistence scenario would point to an
unconventional superconducting phase in the ground state.Comment: 10 pages, 4 figure
- …