9 research outputs found

    Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts Expressed Throughout Development

    Get PDF
    Background: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. Methodology/Principal Findings: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. Conclusions/Significance: Our work demonstrates that sept9 plays an important role in zebrafish development, an

    Enhanced vaccine-induced CD8+ T cell responses to malaria antigen ME-TRAP by fusion to MHC class ii invariant chain.

    Get PDF
    The orthodox role of the invariant chain (CD74; Ii) is in antigen presentation to CD4+ T cells, but enhanced CD8+ T cells responses have been reported after vaccination with vectored viral vaccines encoding a fusion of Ii to the antigen of interest. In this study we assessed whether fusion of the malarial antigen, ME-TRAP, to Ii could increase the vaccine-induced CD8+ T cell response. Following single or heterologous prime-boost vaccination of mice with a recombinant chimpanzee adenovirus vector, ChAd63, or recombinant modified vaccinia virus Ankara (MVA), higher frequencies of antigen-specific CD4+ and CD8+ T cells were observed, with the largest increases observed following a ChAd63-MVA heterologous prime-boost regimen. Studies in non-human primates confirmed the ability of Ii-fusion to augment the T cell response, where a 4-fold increase was maintained up to 11 weeks after the MVA boost. Of the numerous different approaches explored to increase vectored vaccine induced immunogenicity over the years, fusion to the invariant chain showed a consistent enhancement in CD8+ T cell responses across different animal species and may therefore find application in the development of vaccines against human malaria and other diseases where high levels of cell-mediated immunity are required

    Clinical and pathophysiological concepts of neuralgic amyotrophy

    No full text
    Item does not contain fulltextNeuralgic amyotrophy--also known as Parsonage-Turner syndrome or brachial plexus neuritis--is a distinct and painful peripheral neuropathy that causes episodes of multifocal paresis and sensory loss in a brachial plexus distribution with concomitant involvement of other PNS structures (such as the lumbosacral plexus or phrenic nerve) in a large number of patients. The phenotype can be limited or extensive and the amount of disability experienced also varies between patients, but many are left with residual disabilities that affect their ability to work and their everyday life. Both idiopathic and hereditary forms exist. The latter form is genetically heterogeneous, but in 55% of affected families, neuralgic amyotrophy is associated with a point mutation or duplication in the SEPT9 gene on chromosome 17q25. The disease is thought to result from an underlying genetic predisposition, a susceptibility to mechanical injury of the brachial plexus (possibly representing disturbance of the epineurial blood-nerve barrier), and an immune or autoimmune trigger for the attacks. The precise pathophysiological mechanisms are still unclear; treatment is empirical, and preventive measures are not yet available. This Review provides an overview of the current clinical and pathophysiological concepts and research topics in neuralgic amyotrophy
    corecore