73 research outputs found

    New Human Papilloma Virus E2 Transcription Factor Mimics: A Tripyrrole-Peptide Conjugate with Tight and Specific DNA-Recognition

    Get PDF
    BACKGROUND: Human papillomavirus (HPV) is the main causative agent of cervical cancer, particularly high risk strains such us HPV-16, -18 and -31. The viral encoded E2 protein acts as a transcriptional modulator and exerts a key role in viral DNA replication. Thus, E2 constitutes an attractive target for developing antiviral agents. E2 is a homodimeric protein that interacts with the DNA target through an α-helix of each monomer. However, a peptide corresponding to the DNA recognition helix of HPV-16 E2 binds DNA with lower affinity than its full-length DNA binding domain. Therefore, in an attempt to promote the DNA binding of the isolated peptide, we have designed a conjugate compound of the E2 α-helix peptide and a derivative of the antibiotic distamycin, which involves simultaneous minor- and major-groove interactions. METHODOLOGY/PRINCIPAL FINDINGS: An E2 α-helix peptide-distamycin conjugate was designed and synthesized. It was characterized by NMR and CD spectroscopy, and its DNA binding properties were investigated by CD, DNA melting and gel shift experiments. The coupling of E2 peptide with distamycin does not affect its structural properties. The conjugate improves significantly the affinity of the peptide for specific DNA. In addition, stoichiometric amounts of specific DNA increase meaningfully the helical population of the peptide. The conjugate enhances the DNA binding constant 50-fold, maintaining its specificity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that peptide-distamycin conjugates are a promising tool to obtain compounds that bind the E2 target DNA-sequences with remarkable affinity and suggest that a bipartite major/minor groove binding scaffold can be a useful approach for therapeutic treatment of HPV infection

    Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction

    Get PDF
    BACKGROUND: Hepatocelluar carcinoma (HCC) is one of the most common cancers worldwide and a major cause of cancer-related mortality. HCC is highly resistant to currently available chemotherapeutic drugs. Defects in apoptosis signaling contribute to this resistance. Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 protein family which interferes with mitochondrial activation. In a previous study we have shown that Mcl-1 is highly expressed in tissues of human HCC. In this study, we manipulated expression of the Mcl-1 protein in HCC cells by RNA interference and analyzed its impact on apoptosis sensitivity of HCC cells in vitro. METHODS: RNA interference was performed by transfecting siRNA to specifically knock down Mcl-1 expression in HCC cells. Mcl-1 expression was measured by quantitative real-time PCR and Western blot. Induction of apoptosis and caspase activity after treatment with chemotherapeutic drugs and different targeted therapies were measured by flow cytometry and fluorometric analysis, respectively. RESULTS: Here we demonstrate that Mcl-1 expressing HCC cell lines show low sensitivity towards treatment with a panel of chemotherapeutic drugs. However, treatment with the anthracycline derivative epirubicin resulted in comparatively high apoptosis rates in HCC cells. Inhibition of the kinase PI3K significantly increased apoptosis induction by chemotherapy. RNA interference efficiently downregulated Mcl-1 expression in HCC cells. Mcl-1 downregulation sensitized HCC cells to different chemotherapeutic agents. Sensitization was accompanied by profound activation of caspase-3 and -9. In addition, Mcl-1 downregulation also increased apoptosis rates after treatment with PI3K inhibitors and, to a lower extent, after treatment with mTOR, Raf I and VEGF/PDGF kinase inhibitors. TRAIL-induced apoptosis did not markedly respond to Mcl-1 knockdown. Additionally, knockdown of Mcl-1 efficiently enhanced apoptosis sensitivity towards combined treatment modalities: Mcl-1 knockdown significantly augmented apoptosis sensitivity of HCC cells towards chemotherapy combined with PI3K inhibition. CONCLUSION: Our data suggest that specific downregulation of Mcl-1 by RNA interference is a promising approach to sensitize HCC cells towards chemotherapy and molecularly targeted therapies

    Aneuploidy as a mechanism of adaptation to telomerase insufficiency

    Get PDF
    Cells’ survival is determined by their ability to adapt to constantly changing environment. Adaptation responses involve global changes in transcription, translation, and posttranslational modifications of proteins. In recent years, karyotype changes in adapting populations of single cell organisms have been reported in a number of studies. More recently, we have described aneuploidy as an adaptation mechanism used by populations of budding yeast Saccharomyces cerevisiae to survive telomerase insufficiency induced by elevated growth temperature. Genetic evidence suggests that telomerase insufficiency is caused by decreased levels of the telomerase catalytic subunit Est2. Here, we present experiments arguing that the underlying cause of this phenomenon may be within the telomerase RNA TLC1: changes in the expression of TLC1 as well as mutations in the TLC1 template region affect telomere length equilibrium and the temperature threshold for the induction of telomerase insufficiency. We discuss what lies at the root of telomerase insufficiency, how cell populations overcome it through aneuploidy and whether reversible aneuploidy could be an adaptation mechanism for a variety of environmental stresses

    Gene therapy for carcinoma of the breast: Pro-apoptotic gene therapy

    Get PDF
    The dysregulation of apoptosis contributes in a variety of ways to the malignant phenotype. It is increasingly recognized that the alteration of pro-apoptotic and anti-apoptotic molecules determines not only escape from mechanisms that control cell cycle and DNA damage, but also endows the cancer cells with the capacity to survive in the presence of a metabolically adverse milieu, to resist the attack of the immune system, to locally invade and survive despite a lack of tissue anchorage, and to evade the otherwise lethal insults induced by drugs and radiotherapy. A multitude of apoptosis mediators has been identified in the past decade, and the roles of several of them in breast cancer have been delineated by studying the clinical correlates of pathologically documented abnormalities. Using this information, attempts are being made to correct the fundamental anomalies at the genetic level. Fundamental to this end are the design of more efficient and selective gene transfer systems, and the employment of complex interventions that are tailored to breast cancer and that are aimed concomitantly towards different components of the redundant regulatory pathways. The combination of such genetic modifications is most likely to be effective when combined with conventional treatments, thus robustly activating several pro-apoptotic pathways

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Polycomb group proteins: navigators of lineage pathways led astray in cancer

    Full text link

    CD40 in coronary artery disease: a matter of macrophages?

    Get PDF
    corecore