2,662 research outputs found

    Cloning and expression analysis of two distinct HIF-alpha isoforms – gcHIF-1alpha and gcHIF-4alpha – from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus

    Get PDF
    BACKGROUND: Hypoxia-inducible factors (HIFs) are involved in adaptive and survival responses to hypoxic stress in mammals. In fish, very little is known about the functions of HIFs. RESULTS: We have cloned and characterized two distinct HIF-alpha cDNAs – gcHIF-1alpha and gcHIF-4alpha – from the hypoxia-tolerant grass carp. The deduced gcHIF-1alpha protein is highly similar to the HIF-1alphas (57–68%) from various vertebrate species, while gcHIF-4alpha is a novel isoform, and shows an equivalent degree of amino acid identity (41–47%) to the HIF-1alpha, HIF-2alpha and HIF-3alpha proteins so far described. Parsimony analysis indicated that gcHIF-4alpha is most closely related to the HIF-3alpha proteins. Northern blot analysis showed that mRNA levels of gcHIF-1alpha and gcHIF-4alpha differ substantially under normoxic and hypoxic conditions, while Western blot studies demonstrated that the endogenous protein levels for both gcHIF-1alpha and gcHIF-4alpha are similarly responsive to hypoxia. Our findings suggest that both gcHIF-1alpha and gcHIF-4alpha are differentially regulated at the transcriptional and translational levels. HRE-luciferase reporter assays show that both proteins function as transcription activators and play distinct roles in modulating the hypoxic response in grass carp. CONCLUSION: There are at least two distinct HIF-alpha isoforms – gcHIF-1alpha and gcHIF-4alpha – in the hypoxia-tolerant grass carp, which are differentially expressed and regulated in different fish organs in response to hypoxic stress. Overall, the results suggest that unique molecular mechanisms operate through these two HIF-alpha isoforms, which underpin the hypoxic response in the hypoxia-tolerant grass carp

    Implementing guidelines for the prescribing of vancomycin and teicoplanin

    Get PDF
    published_or_final_versio

    Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/β-catenin signalling pathway

    Get PDF
    Objectives: Interaction between neoplastic and stromal cells plays an important role in tumour progression. It was recently found that WNT2 was frequently overexpressed in fibroblasts isolated from tumour tissue tumour fibroblasts (TF) compared with fibroblasts from non-tumour tissue normal fibroblasts in oesophageal squamous cell carcinoma (OSCC). This study aimed to investigate the effect of TF-secreted Wnt2 in OSCC development via the tumour - stroma interaction. Methods: Quantitative PCR, western blotting, immunohistochemistry and immunofluorescence were used to study the expression pattern of Wnt2 and its effect on the Wnt/β-catenin pathway. A Wnt2-secreting system was established in Chinese hamster ovary cells and its conditioned medium was used to study the role of Wnt2 in cell proliferation and invasion. Results: Expression of Wnt2 could only be detected in TF but not in OSCC cancer cell lines. In OSCC tissues, Wnt2 (+) cells were mainly detected in the boundary between stroma and tumour tissue or scattered within tumour tissue. In this study, Wnt2-positive OSCC was defined when five or more Wnt2(+) cells were observed in 2003X microscopy field. Interestingly, Wnt2-positive OSCC (22/51 cases) was significantly associated with lymph node metastases (p=0.001), advanced TNM stage (p=0.001) and disease-specific survival (p<0.0001). Functional study demonstrated that secreted Wnt2 could promote oesophageal cancer cell growth by activating the Wnt/β-catenin signalling pathway and subsequently upregulated cyclin D1 and c-myc expression. Further study found that Wnt2 could enhance cell motility and invasiveness by inducing epithelial-mesenchymal transition. Conclusions: TF-secreted Wnt2 acts as a growth and invasion-promoting factor through activating the canonical Wnt/β-catenin signalling pathway in oesophageal cancer cells.published_or_final_versio

    Hypoxia causes transgenerational impairments in reproduction of fish

    Get PDF
    published_or_final_versio

    Osteoma in the upper cervical spine with spinal cord compression

    Get PDF
    Osteoma is a common benign tumor. It occurs dominantly at the skull bone. Outside skull osteoma is rare, and primary intra-canal osteoma is extremely rare. To the author’s knowledge, only 14 cases of osteomas of the spine had been reported, in which only seven cases were in English literature. The authors reported two rare cases of intra-canal osteoma of the upper cervical spine with cord compression. Included are pertinent history, physical examination, rontgenographic evaluation before and after operation, surgical interventions, pathological study, and outcome. The available literature is also reviewed. On systemic examination and rontgenographic study, these two cases were found to have bone tumor in the upper cervical canal. Surgical interventions were performed, one with an en bloc excision, the other with a subtotal excision. The pathological study demonstrated a diagnosis of osteoma. After a follow-up with 20 and 15 months, the clinical symptoms of both cases significantly improved

    A review on the latest advances in extraction and analysis of artemisinin

    Get PDF
    Introduction: Artemisinin (1), a well-known natural antimalarial drug, is a sesquiterpene lactone that contains a unique peroxide bridge. Since its discovery, the amount of research into the analysis of artemisinin has increased considerably, and it has been further intensified since the Noble Prize win by Tu Youyou in the year 2015 for the discovery of artemisinin. Objective: To review published literature on the extraction and analysis of artemisinin, published during 2017-present, and to present an appraisal of those methods. Methodology: Extensive literature search was carried out which involved, but not limited to, the use of, various databases, like Web of Knowledge, PubMed and Google Scholar, and relevant published materials including published books. The keywords used, in various combinations, with artemisinin being present in all combinations, in the search were artemisinin, Artemisia annua, analysis, extraction, quantitative, qualitative and quality control. Results: During the period covered in this review, there are several methods of analysis of artemisinin have been reported, the most of which were LC-based methods. However, the use of new methods like near infrared analysis, fluorometirc analysis and molecular imprinting, and a significant increase in the use of computational tools have been observed. Mainly several methods involving supercritical fluid extraction and ultrasound-assisted extraction of artemisinin have dominated the extraction area. Conclusions: Newer analytical tools, as well as improved protocols for the known analytical tools, for qualitative and quantitative determination of artemisinin (1), have been made available by various researchers during the period covered by this review. Supercritical fluid extraction and ultrasound-assisted extraction are still the methods of choice for extraction of artemisinin

    Respiratory Syncytial Virus NS1 Protein Colocalizes with Mitochondrial Antiviral Signaling Protein MAVS following Infection

    Get PDF
    Respiratory syncytial virus (RSV) nonstructural protein 1(NS1) attenuates type-I interferon (IFN) production during RSV infection; however the precise role of RSV NS1 protein in orchestrating the early host-virus interaction during infection is poorly understood. Since NS1 constitutes the first RSV gene transcribed and the production of IFN depends upon RLR (RIG-I-like receptor) signaling, we reasoned that NS1 may interfere with this signaling. Herein, we report that NS1 is localized to mitochondria and binds to mitochondrial antiviral signaling protein (MAVS). Live-cell imaging of rgRSV-infected A549 human epithelial cells showed that RSV replication and transcription occurs in proximity to mitochondria. NS1 localization to mitochondria was directly visualized by confocal microscopy using a cell-permeable chemical probe for His6-NS1. Further, NS1 colocalization with MAVS in A549 cells infected with RSV was shown by confocal laser microscopy and immuno-electron microscopy. NS1 protein is present in the mitochondrial fraction and co-immunoprecipitates with MAVS in total cell lysatesof A549 cells transfected with the plasmid pNS1-Flag. By immunoprecipitation with anti-RIG-I antibody, RSV NS1 was shown to associate with MAVS at an early stage of RSV infection, and to disrupt MAVS interaction with RIG-I (retinoic acid inducible gene) and the downstream IFN antiviral and inflammatory response. Together, these results demonstrate that NS1 binds to MAVS and that this binding inhibits the MAVS-RIG-I interaction required for IFN production

    Single-cell analysis reveals individual spore responses to simulated space vacuum

    Get PDF
    Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores’ molecular changes under simulated space vacuum (~10−5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2 +-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores’ resistance mechanisms to high vacuum, DNA-protective α/β−type small acid-soluble proteins, and non- homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore’s responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level

    Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrial natriuretic peptide (ANP) and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126) of pro-atrial natriuretic factor (proANF) and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF) have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD), another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma.</p> <p>Methods</p> <p>A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2) through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid.</p> <p>Results</p> <p>pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation.</p> <p>Conclusion</p> <p>VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.</p
    corecore