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Abstract 

Introduction: 

Artemisinin (1), a well-known natural antimalarial drug, is a sesquiterpene lactone that 

contains a unique peroxide bridge. Since its discovery, the amount of research into the 

analysis of artemisinin has increased considerably, and it has been further intensified since 

the Noble Prize win by Tu Youyou in the year 2015 for the discovery of artemisinin. 

Objective: 

To review published literature on the extraction and analysis of artemisinin, published during 

2017-present, and to present an appraisal of those methods. 

Methodology: 

Extensive literature search was carried out which involved, but not limited to, the use of, 

various databases, like Web of Knowledge, PubMed and Google Scholar, and relevant 

published materials including published books. The keywords used, in various combinations, 

with artemisinin being present in all combinations, in the search were artemisinin, Artemisia 

annua, analysis, extraction, quantitative, qualitative and quality control. 

Results: 

During the period covered in this review, there are several methods of analysis of artemisinin 

have been reported, the most of which were LC-based methods. However, the use of new 

methods like near infrared analysis, fluorometirc analysis and molecular imprinting, and a 

significant increase in the use of computational tools have been observed. Mainly several 

methods involving supercritical fluid extraction and ultrasound-assisted extraction of 

artemisinin have dominated the extraction area. 

Conclusions: 

Newer analytical tools, as well as improved protocols for the known analytical tools, for 

qualitative and quantitative determination of artemisinin (1), have been made available by 

various researchers during the period covered by this review. Supercritical fluid extraction 

and ultrasound-assisted extraction are still the methods of choice for extraction of 

artemisinin. 
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1 INTRODUCTION 

 Artemisinin (1) (Figure 1), a well-known natural antimalarial drug, is a sesquiterpene 

lactone that contains a unique peroxide bridge, also known as endoperoxy (1,2,4-trioxane 

ring) functionality, which is believed to be responsible for how this compounds acts against 

malarial infection1-3. Recently, anticancer potential of artemisinin (1) and its analogues has 

been documented in a number of publications4. Since its discovery from the Chinese 

medicinal plant, Artemisia annua L. (family: Asteraceae), common name, “qinghao”, in  1972 

by Tu Youyou, the winner of the 2015 Noble Prize in Medicine or Physiology2, there has been 

a large body of research carried out on various aspects of artemisinin (1), covering its 

production, biosynthesis, extraction, analysis/assay and bioactivity, most of which, until the 

end of 2016, have been captured in different chapters of the book written by Tu Youyou, 

published in 20175. In fact, research into artemisisin (1) has been further intensified after Tu’s 

wining of the Nobel Prize, and consequently, during the last couple of years, a good number 

of publications on the extraction and analysis of artemisinin (1) have become available. This 

review focuses on and appraises the scientific papers that report on various extraction 

methods and analytical/assay methods for artemisinin (1) that have been published since 

2017 until to date.  

2   EXTRACTION 

 Artemisinin (1) is distributed within the range of 0.01-1.4% in various parts of A. 

annua, including leaves, flowers and buds6. The traditional way of extracting artemisinin (1) 

from this plant is rather time consuming, and usually involves steeping or stirring the leaves 

in the extraction solvent (generally n-hexane or ethanol) for several days. Whilst n-hexane is 

the most common solvent used in this method of extraction, other solvents like ethanol, 

toluene and petroleum ether are also used. It is also quite common to use elevated 

temperature and refluxing (e.g., at 40oC) of plant material in a chosen solvent over 10-48 

hours to increase the extraction yield of artemisinin (1).  In fact, as the amount of artemisinin 

(1) present in A. annua is extremely low, continuous efforts were devoted to employ more 

effective and environmentally friendly extraction methods, e.g., Soxhlet, ultrasound and 

microwave-assited extraction, and supercritical fluid extraction (often supercritical CO2 

extraction) to increase extraction yield of this compound, and these efforts have also 
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continued to date (Table 1). A clear shift towards predicting the best extraction parameters 

for a certain type of extraction method, e.g., ultrasound-assited extraction, utilizing various 

computational tools and mathematical modelling, has been observed in recent years. During 

the period from 2017 to present, mainly several protocols of ultrasound-assisted extraction 

and supercritical fluid extraction of artemisinin (1) have been reported (Table 1)7-21, which will 

be discussed briefly in the following subsections. 

2.1  Supercritical fluid extraction (SFE) 

Supercritical fluid extraction (SFE) is an extraction method that utilizes a supercritical 

fluid, e.g., supercritical CO2, as the extracting solvent to extract usually from a solid matrix22,23. 

Sometimes, the main supercritical fluid is modified by the addition of small volume of co-

solvents such as ethanol or methanol. This extraction method is particularly useful for 

relatively nonpolar thermolabile materials. Artemisinin (1) is a nonpolar sesquiterpene, and 

can be extracted successfully from A. annua by SFE12-15.  In fact, artemisinin’s solubility in 

supercritical CO2, in terms of mole fraction, was found to be within the range of 10−4 to 10−3, 

which is higher than typical solubilities of many biomolecules. 

Martinez-Correa et al.15 reported an integrated SFE method for the extraction of 

artemisinin (1) from the leaves of A. annua, and the method had two steps: the first one 

involved supercritical CO2 as the solvent, and the second step utilized ethanol or water to 

extract the solid residue obtained from the first step. The second step only extracted polar 

compounds, e.g., phenolics, but no artemisinin (1). As a result, after the ethanol or water 

extraction, the initial SFE solid residue mainly contained or was rich in artemisinin (1), and 

free from other polar impurities. Another recently published SFE method for artemisinin (1) 

from A. annua established that the best extraction yield could be achieved using 100 bar 

pressure and 40oC temperature14. Based on this optimization, later, the scale up and 

economic analysis of SFE for artemisisin (1) has been reported24. 

Negi et al.13 reported a supercritical CO2 method for the extraction of artemisinin (1) 

from A. annua in temperature and pressure ranges of 313.1-333.1 K and 15-25 MPa. In this 

work, artemisinin (1) global yield isotherms were established producing a maximum yield of 

around 4%. Artemisinin (1) was also Soxhlet-extracted with n-hexane, and the resulting crude 

extract was subjected to SFE using supercritical CO2 after adsorption on silica gel, yielding 

much purer artemisinin (1). The SFE was carried out in the LAB SFE 100 mL (Separex), 
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composed of a CO2 heater, an extractor with extraction cells of varied volumes, a temperature 

and pressure control system and an extract collector. The extraction unit could handle up to 

50 MPa and 423.1 K. The flow rate of CO2 was maintained constant at 25 g/min, and the 

samples were collected at different intervals from 10 to 90 min. A similar work was carried 

out by Rodrigues et al.12, where the SFE operating conditions, e.g., temperature, pressure and 

co-solvent use to obtain artemisinin-enriched extract were optimized using a fully 

randomized factorial design comprising three levels of temperatures, pressures and co-

solvent contents, and the economic evaluation of the SFE compared to conventional ethanol 

extraction was reported. It was found that the artemisinin extraction by conventional ethanol 

extraction offered higher global yield (about 12 g/100 g of plant material) than that from SFE 

(max. 9.5 g/100 g of plant material), but with lower artemisinin (1) content. SFE was more 

specific for extracting artemisinin (1) than the conventional ethanol extraction. 

In recent years, the use of computational tools and mathematical models has 

increased significantly in all types of phytochemical methods, particularly in the optimization 

of extraction parameters in various extraction techniques25. A supercritical CO2 extraction 

protocol for artemisinin (1), modified with ethanol, based on response surface methodology 

developed from central composite rotatable design that helped optimize extraction pressure, 

temperature, and co-solvent use, has recently been reported16. It can be noted that the 

response surface methodology explores the interplay between several explanatory variables 

and one or more response variables, and can be used to maximize the production of a special 

substance by optimization of operational factors/variables. In this study, various extraction 

conditions, e.g., pressure (9.9-30 MPa), temperature (33-67°C), and co-solvent (ethanol, 0-

12.6%) were explored. The optimum SFE extraction conditions were established at 30 MPa 

and 33°C without ethanol, yielding 1.09% of artemisinin (1). It was also reported that the 

Soxhlet extraction with n-hexane produced higher artemisinin (1) yields and no significant 

difference could be detected in the purity of the SFE extracts and Soxhlet extracts.  

A strategy for increasing artemisinin yield by combining a traditional maceration and 

SFE was reported by Baldino & Reverchon7. The aerial parts of A. annua was macerated with 

n-hexane to obtain a crude extract, which was further extracted with supercritical CO2 

extraction to obtain artemisinin-enriched extract7
. This hybrid approach produced the final 

product that contained 71% of active compounds, which was more than twice the 
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concentration that can be obtained from optimized direct SFE, and 2.6 times richer in active 

principles than the traditional solvent extraction could produce.  

2.2 Ultrasound-assisted extraction 

 As the name implies, ultrasound-assisted extraction, utilizes ultrasound or ultrasonic 

agitation to enhance extraction yield from a solid matrix using a solvent or solvents 

mixture26,27. The use of this technique for the isolation of artemisinin (1) from A. annua is not 

new, and there are several publications on this topic, especially using organic solvents6. 

However, there have been further reports on ultrasound extraction of artemisinin (1) in 

recent years, particularly since 2017. Cai et al.21 reported an ultrasound-assited extraction 

method for artemisisin (1) from the leaves of A. annua using a deep eutectic solvent, where 

they demonstrated the tunability of hydrophobic deep eutectic solvents as designer solvents 

for efficient extraction of bioactive compounds, e.g., artemisinin, (1) from plant materials. A 

hydrophobic deep eutectic solvent (N81Cl-NBA) was prepared from methyl trioctyl 

ammonium chloride and 1-butanol at a molar ratio of 1:4, and this solvent showed the highest 

extraction yield. Again, the main factors affecting the extraction efficiency were optimized by 

a central composite design combined with a response surface methodology. The optimized 

conditions were as follows: solvent-solid ration 35:2, ultrasonic power 180 W, temperature 

45oC, particle size 80 mesh, and extraction time 70 min. These optimized conditions afforded 

a higher extraction yield of about 8 mg/g than conventional organic solvent petroleum ether. 

The artemisinin recovery from the extraction solution was accomplished by AB-8 

macroporous resin (recovery yield ~86%). This study established that it is not only a 

hydrophilic deep eutectic solvent, but also a hydrophobic deep eutectic solvent can be a true 

designer solvent for use as a green and safe extraction solvent. 

Box-Behnken experimental design along with response surface methodology was 

employed for ultrasound-assisted extraction of artemisinin (1) from A. annua using ethanol 

as the solvent20. The Box-Behnken design is an independent quadratic design in that it does 

not contain an embedded factorial or fractional factorial design, where the treatment 

combinations are at the midpoints of edges of the process space and at the centre25. In the 

study carried out by Silva et al.20, the effects of the extraction parameters, i.e., ethanol 

graduation, previous shaking time in an ultrasound bath, and drug/solvent ratio, on the 

artemisinin extraction efficiency were evaluated. 
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Zhang et al.19 reported an ultrasound extraction protocol for artemisinin (1) using 

mono-ether based solvents, e.g., propylene glycol methyl ether. Compared with conventional 

extraction, this reported method had a higher extraction efficiency (13.79 mg/g vs. 13.29 

mg/g) and much shorter extraction time (0.5 h vs 8 h) at a relatively low temperature. 

Moreover, propylene glycol methyl ether had low toxicity and volatility, which made the 

extraction process safer and more reliable. An ultrasonic bath (KQ-250DB, Kunshan, Jiangsu, 

China) was used as the ultrasonic source. The unit was a rectangular container (23.5 × 13.3 × 

10.2 cm), in which 20 kHz transducers were annealed at the bottom. An ultrasound-assisted 

extraction of artemisinin (1) using n-hexane has recently been reported18, where artemisinin 

(1) contents in selected Artemisia species from Tajikistan (Central Asia) were determined. The 

extraction protocol was rather simple; the extraction process of dried aerial parts of Artemisia 

plants involved the following steps: 10 g of plant materials were crushed into smaller pieces, 

n-hexane (150 mL) was added at room temperature, and sonicated in an ultrasonic bath at a 

frequency of 35 kHz for 15 min at room temperature. Plant mixtures were allowed to stand 

for 12 h at room temperature, then filtered through Whatman filter paper and used for the 

designed chemical analysis. 

Ruan et al.17 reported a ultrasound extraction method for artemisinin (1), where an 

orthogonal experiment was used. The ratio of material to liquid, extraction time and number 

of extractions were selected as the investigation factors. The content of five compounds in 

samples of A. annua was used as the index, and the experimental optimal extraction process 

conditions were established as follows: extraction with methanol by ultrasonic extraction, 

comprising two cycles of 0.25 h each, and a ratio of material to liquid of 1:20 (g/mL). Single 

factor experiments were performed to optimize the extraction process.  

2.3 Miscellaneous extraction 

 Artemisinin (1) extraction from A. annua based on systematic and model-assited 

process design, which was established from lab-scale experiments and miniplant-scale pilot, 

were reported8,9. Artemisinin (1) was extracted from A. annua by conventional percolation 

using acetone, and pressurized hot water extraction was performed at 800C to extract 

artemisinin (1)9. In both cases, a systematic and model-assisted process design was used 

aiming at defining resource-efficient and economic processes. Fresh solvent was pumped 

through a column filled with plant material, which allowed maintenance of a concentration 
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gradient between the solvent and the plant material, making a complete leaching possible. 

The study demonstrated a systematic and model-based comparison of two different ways of 

extracting artemisinin (1), where high productivities and yields were observed.  

Laboukhi-Khorsi et al.10 reported the extraction method using Hansen solubility 

parameters in practice approach, where isopropanol, a green alternative to n-hexane, was 

used for artemisinin (1) extraction from A. annua with the yield of 65%. It can be noted that 

Hansen solubility parameters are another potentially useful concept for determination of the 

degree of compatibility and incompatibility of two materials. 

A high-throughput analytical method employing deep eutectic solvents, which are 

generally formed from a eutectic mixture of Lewis or BrØnsted acids and bases that can 

contain several anionic and cationic species, for mechanochemical extraction combined with 

direct analysis in real time mass spectrometry (DART-MS), was developed by Wang et al.11 to 

quantify thermolabile artemisinin (1) and related components of A. annua.  Mechanochemical 

extraction was performed at room temperature, and the target analytes were released into 

deep eutectic solvents within seconds, demonstrating multiple advantages over traditional 

extraction methods using organic solvents. This study displayed a method combining high-

efficiency sample pretreatment and rapid chemical analysis from complex matrices, by 

eliminating time-consuming separation procedure, and avoiding the use of toxic organic 

solvents needed for extraction and analysis of artemisinin (1). 

3   ANALYSIS 

 The analysis or assay of artemisinin (1), either in the source plant, i.e., A. annua, or in 

other biological matrices, e.g., plasma, generally involves various analytical tools and/or 

chemical means. The qualitative and quantitative determination of artemisinin (1) are two 

major objectives usually the researchers want to achieve from any particular analytical 

protocol. Since the discovery of artemisinin (1) almost half a century ago, the 

chromatographic methods have evolved considerably, especially with the introduction of 

various hyphenated techniques26 and the remarkable advancements in computational 

methods25 leading to automation and precision of any analytical method. In the earlier years 

of artemisinin development, qualitative and quantitative determination of artemisinin (1) 

often involved thin layer chromatography, and then high performance thin layer 

chromatography. However, nowadays most of such analyses are carried out using modern 
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hyphenated techniques, e.g., HPLC-UV, HPLC-PDA or HPLC-MS. Most of these analytical 

techniques or assays for artemisinin (1) reported until the end of year 2016 have been well 

documented and appraised in the book published by Tu5. However, since then, several 

modified, and somewhat more precise and fast analytical protocols (Table 2)28-41, mainly 

involving various HPLC systems, have been reported in the literature. The following 

subsections will summarize and appraise those new published protocols. 

3.1 Computer-assisted structure analysis  

 Artemisinin (1), albeit has only 15 carbon atoms, is a complex molecule (Figure 1) in 

terms of structure elucidation, especially concerning relative and absolute stereochemistry. 

Various 1D and 2D NMR techniques have previously been used to deduce the structure of this 

unique sesquiterpene5. However, attempts to improve the structure elucidation process 

involving modern computational aids, particularly to define the 3D structure of artemisinin 

(1) have continued. As a result of such an effort, Navarro-Vazquez et al.28 have recently 

reported a computer-assisted 3D structural elucidation (CASE-3D) method based on the use 

of isotropic and/or anisotropic NMR data was established to elucidate relative configuration 

and preferred conformation in complex natural products like artemisinin (1). This approach 

incorporated the selection of conformational models through employing the Akaike 

Information Criterion (AIC) and scoring of the different configurations. It can be noted that 

AIC is an estimator of the relative quality of statistical models for a given set of data, 

considering the quality of each model, relative to each other models. Because of this 

computer-assisted 3D structural analysis, the correct configuration of the already known 

artemisinin (1) could be confirmed. The method described here was an extension of existing 

CASE-3D protocol using other NMR observables, mainly 13C NMR chemical shifts, either alone 

or in conjunction with 1H NMR chemical shifts, 1DCH RDCs, and 3JHH couplings.  

In this study, all 1D and 2D NMR data were obtained on a commercially available 

sample of artemisinin (1), which were then fed into the MNova structural elucidation 

software42. After the 13C NMR empirical chemical shift prediction, the first scored structure, 

as shown in Figure 1, was obtained. The next step involved feeding of 2D SDF file into the 

previously published Python programme43, which encapsulated the diastereoisomer 

generation and conformational search steps, followed by the development of new scripts to 

automatically launch the DFT chemical shift computations. Because of the geometrical 
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hindrance created by the peroxide ring, only 32 diastereoisomers from possible 64 could be 

obtained. A list of 13C NMR chemical shifts sourced from the automated peak picking in Mnova 

was fed into StereoFitter, which could be run with assigned or unassigned data sets. When 

the latter were used, it produced moderate discrimination of the relative configuration of 

artemisinin (1), with AIC differences ΔAIC = AIC – AICmin of 13-14 over the closest scoring 

forms.  A higher discrimination (ΔAIC > 25, relative probability <2 × 10–4 %) was obtained using 

the assigned data. 

Navarro-Vazquez et al.28 highlighted that 1DCH RDCs could not be sufficient to ascertain 

the relative configuration of artemisinin (1); RDC-only fitting could only result in the correct 

structure S,R,S,R,S,R,R and its isomer R,R,S,R,S,S,R, where C-1 and C-10 positions were 

epimerized with very similar AIC values (the correct configuration had a probability of 0.4 over 

the incorrect form). The probable reason behind this was explained with the fact that 

inversion at carbons C-1 and C-10 just could invert 180o the CH vectors at that position with 

respect to a common molecular frame. 

3.2 Cyclic voltametric analysis 

Cyclic voltammetry is a potentiodynamic electrochemical measurement, where the 

working electrode potential is ramped linearly versus time44. After the set potential is reached 

in this experiment, the working electrode's potential is ramped in the opposite direction to 

return to the initial potential. A combination of cyclic voltammetry and amperometry was 

applied for the determination of electrolytic products of artemisinin (1)29. Although this was 

not exactly the method for quantitative or qualitative analysis of artemisisin (1), it was a 

method for analysing artemisinin derivatives.  

In this experiment, amperometric and cyclic voltametric techniques were performed 

with a computer controlled electrochemical workstation (CHI 660c, USA) with 98 % ohmic drop 

compensation. A three-electrode electrochemical cell was used for all electrochemical 

experiments. Glassy carbon (area, 0.017 cm2) was employed as the working electrode, and a 

platinum wire as the counter electrode. Artemisinin (1) was reduced on an electrode surface 

by cyclic voltammetry as well as amperometry to generate one major peak wave at -1.0 V and a 

minor one at -0.3 V vs Ag/AgCl reference electrode. The bulk electrolysis of artemisinin on a carbon 

electrode resulted in two other irreversible peak waves at around -0.7 and -0.1 V. An LC-MS method 
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was used to analyze the electrolytic products of artemisinin (1). Dihydroartemisinin was detected as 

the main reduction product, which produced further reduction products. 

3.3 Fluorometric analysis 

Fluorometry is superior to conventional spectrometry in terms of sensitivity and 

specificity. In fact, the sensitivity of fluorescence is 10-1000-fold greater in comparison to 

absorbance measurements.  It is somewhat a bit difficult to design specific fluorescent probes 

for artemisinin (1) because this sesquiterpene does not have any groups for binding to 

excepting for the peroxide functionality (Figure 1). However, there are some probes available 

for now for this compound30,31. While a sensitive, rapid and simple fluorometric analytical 

method for the analysis of artemisinin (1) in a concentration range 0.1-7 M using 

microperoxidase-11 as a peroxidase biomimetic has been reported recently30, Zou et al.31 

published another fluorometric method for the determination of artemisinin (1) in tablets 

and dried leaf samples of A. annua. In the method presented by Muginova et al.30, the 

determination of artemisinin (1) in a dietary supplement was based on the fluorescence 

quenching of the cationic xanthene dye pyronin B in the presence of microperoxidase-11; the 

correctness and reliability of the results were confirmed by HPLC-MS analysis. It was observed 

that the use of oligopeptide microperoxidase-11 in the place of haeme-containing proteins, 

e.g., haemoglobin, could shorten the duration of artemisinin determination by a factor of two 

with the retention sensitivity and selectivity. 

Zou et al.31 reported that alkaline-hydrolyzed artemisinin (1) could specifically 

recognize and react with vitamin B1 to produce fluorometrically detectable thiochromes. This 

method could work at a low artemisinin (1) concentration in a Tris–HCl buffer solution (pH 

7.5) at room temperature, resulting in a >260-fold enhancement in the blue emission at 442 

nm. It was observed that the fluorescence intensity of the vitamin B1-based probes could 

linearly increase with increasing artemisinin (1) concentration range 1-230 M /mL, and a 

detection limit as low as 11.5 nM/ mL could be achieved. Thus, this method was found to be 

more sensitive than other reported UV-vis absorption and electrochemical methods. 

Additionally, this method was proved to have better selectivity over other ions and 

biomolecules, did not require the preparation of fluorescent probes, and all the detection 

processes could be accomplished within 20 min. In this experiment, all fluorescence 

measurements were recorded using a Hitachi F-7000 Fluorescence Spectrophotometer 
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(Tokyo, Japan) with the excitation slit set at 5 nm band pass and emission at 2.5 nm band pass 

in 1 cm x 1 cm quartz cells, the UV-vis spectra were recorded on a Shimadzu UV-1750 

spectrophotometer (Tokyo, Japan), and the fourier transform infrared (FTIR) spectra were 

recorded on a Shimadzu IR Prestige-21 spectrometer (Tokyo, Japan). 

Earlier, Muginova et al.38 demonstrated the utilization of a cellulose hydrogel film 

reconstituted from ionic liquid, 1-butyl-3-methylimidazolium chloride, for the fluorescent 

determination of artemisinin (1). Very recently, Zhu et al.37 have published a method for the 

determination of artemisinin (1) by using graphene quantum dots as the fluorescent probes. 

3.4 HPLC and UPLC methods 

 Nowadays, HPLC is one of the most popular analytical tools for the analysis of a variety 

of materials including phytochemicals, both qualitatively and quantitatively (Sarker and 

Nahar, 2012)26. HPLC can be coupled to various detection technologies, of which, a simple 

UV-Vis spectrometer is the most widely used one. UV-Vis detection can work with compounds 

that possess chromophores to absorb UV-Vis light. Various HPLC methods were previously 

applied for the qualitative and quantitative determination of artemisinin (1) in various 

matrices45,46, and the use of simple HPLC-UV-Vis method for artemisinin (1) analysis has 

continued in recent years18,32. Some of the popular HPLC columns and solvent systems used 

in the analysis of artemisinin are presented in Table 3.  

A simple HPLC-UV method for the determination of artemisinin (1) in the n-hexane 

extract of A. annua to determine the extraction yield has recently been published18. The HPLC 

analysis was carried out by the HPLC UltiMate 3000 system (Thermo Fisher Scientific, USA) 

coupled with a PDA detector, using Waters columns and gradient mobile phase comprising 

acetonitrile in water (Table 3). The artemisinin (1) content per dry weight of Artemisia species 

ranged from 0.07% to 0.45%, and the highest content of 1 was found in A. annua (0.45%), 

followed by A. vachanica (0.34%). The lowest artemisinin content was detected in A. 

dracunculus (0.07%). Guo et al.32 reported a simple HPLC method for the quality testing of 

artemisinin (1)-based antimalarial medications prescribed in Myanmar.  

Similarly, simple HPLC methods, but using different types of detectors, e.g., refractive 

index and electrochemical detectors, have been outlined in two other recent studies12,13, 

where HPLC analyses were employed to monitor the extraction yield of artemisinin (1). 

Rodriguez et al.12 analyzed the artemisinin content of the A. annua extracts by using a Waters 
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HPLC system coupled with a refractive index detector (IR-Waters, 2414, Pittsburg, USA), 

employing the methanol-water solvent system and the column outlined in Table 3. The HPLC 

runs were performed at a slightly elevated temperature of 35oC. Negi et al.13 reported a 

similar HPLC method, but using a reversed-phase C18 column (Table 3),  for the quantification 

of artemisinin (1) to determine extraction efficiency; they also used a Waters HPLC system 

comprising a Spectra System P2000 pump with an SCM 100 vacuum membrane degasser and 

an electrochemical detector 2465 with glassy carbon electrode (3 mm in diameter), potential 

180 mV. 200 nA. 

When hyphenation is established between HPLC and mass spectrometry, the 

technique becomes significantly powerful, and provides rich structural information that 

facilitates identification of separated compounds from an HPLC run26. In recent years, LC-MS 

and/or LC-MS/MS (also known as LC-tandem MS) methods have been reported for the 

analysis of artemisinin (1)11,33,34. For example, an LC-MS/MS method for the determination of 

artemisinin (1) in rat blood sample for pharmacokinetic study33, an LC-MS/MS method for 

simultaneous determination of artemisinin (1) and six synergistic components in A. annua, 

with a run time of 6 min34, and an LC method, coupled with real time mass spectrometry 

(DART-MS) to quantify artemisinin (1) and related components of A. annua11.  

For the pharmacokinetic study with artemisinin (1), Dai et al.33 performed the LC-

MS/MS analysis on a Shiseido NANOSPACE 1312 HPLC system (Tokyo, Japan) coupled with an 

AB Sciex 4000 Q Trap (Ontario, Canada), using Analyst 1.5 (Applied Biosystems, USA) for data 

acquisition and quantification. A reversed-phase gradient elution comprising acetonitrile and 

water was used (Table 3). The retention time for artemisinin (1) was 2.3 min. In this 

experiment, the optimized MS/MS conditions were: source temperature 25◦C, ion spray 

voltage 5500 V, curtain gas 10 psi, nebulizing gas, 50 psi, turbo ion spray gas 50 psi, entrance 

voltage 4 V and dwell time 150 ms.  Qiu et al.34 reported a quality evaluation method based 

on an LC-MS/MS protocol and hierarchical cluster analysis for simultaneous quantification of 

artemisinin (1) and six synergistic components in A. annua. This accurate and rapid high-

performance liquid chromatography tandem mass spectrometric (HPLC–MS/MS) assay was 

performed on an HPLC system comprising an LC-20AD pump, DGU-20 A3 degasser, SIL-20AC 

autosampler, and CTO-20A column oven (Shimadzu, Japan). In this study, like the previous 

one, a reversed-phase linear gradient elution comprising acetonitrile and water was used 

(Table 3). The LC system was hyphenated to an API 4000 Q Trap MS detector (Applied 
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Biosystems, Ontario, Canada) via a Turbo IonSpray ionization interface. The optimized MS 

operating conditions were quite similar to those mentioned earlier. Another LC method, 

coupled with real time mass spectrometry (DART-MS) to quantify artemisinin (1) and related 

components of A. annua has been reported recently11. 

Ultra Performance Liquid Chromatography (UPLC) is an advanced liquid 

chromatographic technique that offers a significantly short analysis time and small amount of 

solvent(s) as a mobile phase47. Although this technique has been around for over 15 years, 

only in recent years, its use in the analytical area has become popular because of affordability 

of the commercially available UPLC units. This system utilizes a special column packed with 

much smaller particles (typically 1.5-1.7 mm), instead of 3 or 5 mm particles used routinely in 

column packing for phytochemical analysis. The application of UPLC methods in the analysis 

of artemisinin (1) has also become more frequent recently17,19,39. Ruan et al.17 have recently 

reported a simple UPLC-PDA method for the analysis of artemisinin (1), where they used An 

ACQUITY UPLC BEH C18 column (100 x 2.1 mm, 1.7 m), and an isocratic elution with the 

mobile phase comprising 0.1% formic acid aqueous solution and acetonitrile (40:60). The 

injection volume was 1 L, and the data were recorded at 191 nm. An Agilent 1290 UPLC 

system (Agilent, USA), comprising a pump, degasser, column oven, autosampler and PDA 

detector was used. A similar UPLC method has also been reported by Zhang et al.19 for the 

quantification of artemisinin (1) to determine extraction efficiency from an ultrasonic 

extraction of A. annua, where they used a Waters UPLC system equipped with Empower2 

software, a Waters autosampler, a UV detector, and an ACQUITY UPLC® BEH C18 column (1.7 

μm, 2.1 mm × 50 mm; Waters, Ireland). It can be noted that although the column diameter 

and particle size were exactly the same as those used in the method presented by Ruan, the 

column length was just 50 mm as opposed to 100 mm. In addition, instead of a mobile phase 

comprising acetonitrile in water, in this study, they used methanol in sodium acetate aqueous 

solution, and instead of an isocratic elution, a gradient elution was employed. Raju et al.39 

used a UPLC system with a HSS Cyano column (100 x 2.1 mm, particle size: 1.8 m) and the 

mobile phase consisting of 20 mM ammonium formate buffer (pH 6.5) and 0.04% formic acid 

in methanol in a gradient elution programme, which was developed using the systematic trials 

suggested by the software using quality by design (QbD), which is rather a new approach in 

analytical chemistry, particularly where chromatographic methods are used48. 
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3.5 Molecular imprinting method 

Molecular imprinting technology is a method of making a molecular lock to match a 

molecular key to create molecularly imprinted polymers with tailor-made binding sites 

complementary to the template molecules in shape, size and functional groups. This 

technique has recently been used in the analysis of artemisinin (1)40,41. For example, 

molecularly imprinted membranes with multifunctional layers for the separation and 

purification of artemisinin (1) were constructed on porous chitosan membranes40, and a 

biomimetic electrochemical sensor for the determination of artemisinin (1) in plant extracts 

and for pharmacokinetic studies was introduced where a novel molecularly imprinted 

polymer-based electrochemical sensor was developed by electropolymerization of o-

phenylenediamine in the presence of artemisinin (1) on gold wire surface41.  Zhang et al.40 

fabricated the molecularly imprinted layer through an in situ activator generated by electron 

transfer-atom transfer radical polymerization method by using artemisinin (1) as the template 

molecule. It was demonstrated that this type of molecularly imprinted membrane could have 

desirable adsorption ability for artemisinin (about 19 mg/g). This method could offer an 

environmentally friendly and sustainable technology for separation and purification of 

artemisinin (1).  

Waffo et al.41 reported a novel biomimetic electrochemical sensor was developed for 

rapid, sensitive and specific determination of artemisinin (1) using a simple and cost-effective 

approach. The formation of both non-imprinted polymer and molecularly imprinted polymer 

layers could be qualitatively characterized spectrophotometrically. Thus, marker bands 

distinctive for the artemisinin, the o-PD monomer as well as the electrochemically formed 

polymer could be identified and were used for monitoring the entire underlying process. In 

such way, polymer synthesis, template removal and rebinding of artemisinin to the polymer-

coated electrode could be confirmed. It was suggested that the assay protocol developed in 

their work could offer the least complex approach for artemisinin detection to date. It was 

also mentioned that the developed molecularly imprinted polymers could enable 

measurement of artemisinin (1) in an artificial plant matrix, containing five different 

substances found in A. annua, with high selectivity and sensitivity. 
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3.6 Miscellaneous 

Raman spectroscopy is based on inelastic scattering of monochromatic light, usually 

from a laser source. Inelastic scattering means that the frequency of photons in 

monochromatic light changes upon interaction with a sample. Raman spectroscopy has 

recently been used to analyse artemisinin (1)36. In fact, Kong et al.36 reported the qualitative 

and quantitative analysis of artemisinin (1) using Raman spectroscopy, where they used the 

spectral range of 100~3500 cm-1. It was demonstrated that the phonon mode at 724 cm-1 

could be directly correlated with a representative vibrational mode of the ring containing the 

endoperoxy bridge, and could be utilized for Raman detection of this bridge in artemisinin (1), 

making it a artemisinin-specific detection technique. Similarly, the phonon mode at 734 cm-1 

could be implicated to the vibrational mode of the lactone ring, and could be used for further 

identification of artemisinin using Raman spectroscopy. By studying the relative intensity ratio 

of these two phonon modes, the Raman method could be applied for quantitative analysis of 

artemisinin purity. It was suggested that this method was much more powerful, faster, more 

convenient, more accurate than HPLC-based methods, and could be applied for the analysis 

of homogeneity of purity of artemisinin samples offering a practical quality control measure 

for the Chinese medicines based on A. annua. 

A microsensor array coupled with electrochemiluminescence imaging technique, 

which is a widely used analytical technique with the advantages of high sensitivity and low 

background signal, was used for the detection of artemisinin (1) in human serum and A. 

annua35. The microsensor array was constructed by integrating a patterned indium tin oxide 

glass plate with two perforated hydrophobic paper covers. This method could show a good 

selectivity and stability towards artemisinin detection. 

4. CONCLUSIONS 

Supercritical fluid extraction and ultrasound-assisted extraction are still the methods 

of choice for extraction of artemisinin (1). Newer analytical tools, as well as improved 

protocols for known analytical tools, for the qualitative and quantitative determination of 

artemisinin (1) have been made available by various researchers during the period covered 

by this review. Although LC-based assays for artemisinin have dominated this period, a clear 

shit from conventional HPLC- to UPLC-based methods has been noted.  
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FIGURE 1 The molecular structure of artemisinin (1), isolated from Artemisia annua L. 
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TABLE 1 Different extraction methods for artemisinin (1) reported during 2017-19 

Extraction methods Brief details 

Combination of maceration and 

supercritical CO2 extraction 

The aerial parts of A. annua was macerated with n-hexane to obtain a crude extract, which was further 

extracted with supercritical CO2 extraction to obtain artemisinin-enriched extract7. 

Extraction based on model-assited 

process design 

A systematic process design, based on lab-scale experiments and miniplant-scale pilot, for the extraction 

and purification of artemisinin (1) from A. annua8. 

Artemisinin (1) was extracted from A. annua by percolation using acetone9. 

Pressurized hot water extraction was performed at 800C to extract artemisinin (1) from A. annua9. 

Extraction using Hansen solubility 

parameters in practice approach 

Isopropanol was used for artemisinin (1) extraction from A. annua with the yield of 65%10. 

Mechanochemical extraction using 

deep eutectic solvents 

A high-throughput analytical method employing deep eutectic solvents for mechanochemical extraction 

combined with direct analysis in real time mass spectrometry (DART-MS) was developed to quantify 

thermolabile artemisinin (1) and related components of A. annua11. 

Supercritical fluid extraction Optimization of operating conditions, e.g., temperature, pressure and co-solvent use to obtain 

artemisinin-enriched extract12.  

A supercritical CO2 method for the extraction of artemisinin from A. annua in temperature and pressure 

rages of 313.1-333.1 K and 15-25 MPa13. 

Supercritical CO2 extraction of artemisinin (1) from A. annua was optimized, and the best extraction yield 

was achieved using 100 bar pressure and 40oC temperature14. 

Supercritical CO2 extraction, followed by extraction with ethanol and water, was used to extract 

artemisinin (1) from the leaves of A. annua15. 

Supercritical fluid extraction using 

response surface methodology 

Supercritical CO2 extraction of  artemisinin (1), modified with ethanol, based on response surface 

methodology developed from central composite rotatable design, that helped optimize extraction 

pressure, temperature, and co-solvent use16. 

Ultrasound extraction Ultrasound-assited extraction of the leaves of A. annua17. 
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Ultrasound-assisted extraction of A. annua aerial parts using n-hexane18. 

Ultrasound extraction of artemisinin (1) using mono-ether based solvents, e.g., propylene glycol methyl 

ether19. 

Box-Behnken experimental design was employed for ultrasound-assisted extraction of artemisinin (1) 

from A. annua using ethanol as the solvent20. 

Ultrasound-assited extraction of artemisisin (1) from the leaves of A. annua was performed using a deep 

eutectic solvent21. 
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TABLE 2 Different assays and analytical methods for artemisinin (1) reported during 2017-19 

Assays/analytical methods Brief details 

Computer-assited 3D structure 

analysis 

A computer-assisted 3D structural elucidation method based on the use of isotropic and/or anisotropic 

NMR data was established to elucidate relative configuration and preferred conformation in complex 

natural products like artemisinin (1)28. 

Cyclic voltametric analysis A combination of cyclic voltammetry and amperometry for the determination of electrolytic products 

of artemisinin (1)29. 

Fluorometric analysis A fluorometric analytical method for artemisinin (1) using microperoxidase-11 as a peroxidase 

biomimetic30. 

For the determination of artemisinin (1) in tablets and dried leaf samples of A. annua31. 

HPLC methods A simple HPLC-UV method for the determination of artemisinin (1) in the n-hexane extract of A. annua18. 

A simple HPLC method was used for the quality testing of artemisinin (1)-based antimalarial medications 

prescribed in Myanmar32. 

Quantification of artemisinin in the crude extract obtained from SFE 12,13. 

LC-MS method An LC-MS/MS method for the determination of artemisinin (1) in rat blood sample for pharmacokinetic 

study33. 

An LC-MS/MS method for simultaneous determination of artemisinin and six synergistic components in 

A. annua, with a run time of 6 min34. 

An LC method, coupled with real time mass spectrometry (DART-MS) was developed to quantify 

thermolabile artemisinin (1) and related components of A. annua11. 

Microsensor array coupled with 

electrochemiluminescent imaging   

A microsensor array coupled with electrochemiluminescence imaging technique for the detection of 

artemisinin (1) in human serum and A. annua35. 

Raman spectroscopic analysis Qualitative and quantitative analysis of artemisinin (1) was performed using Raman spectroscopy36. 

Sensitive fluorescent assay or 

fluorescence-based sensing 

A method for the determination of artemisinin (1) by using graphene quantum dots as the fluorescent 

probes37. 
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The utilization of a cellulose hydrogel film reconstituted from ionic liquid, 1-butyl-3-methylimidazolium 

chloride, for the fluorescent determination of artemisinin (1)38. 

UPLC-PDA assay An ACQUITY UPLC BEH C18 column was used and an isocratic elution with the mobile phase comprising 

0.1% formic acid aqueous solution and acetonitrile (40:60)17. 

UPLC method utilizing the principles 

of QbD 

A UPLC system using a HSS Cyano column (100 x 2.1 mm, particle size: 1.8 m) and the mobile phase 

consisting of 20 mM ammonium formate buffer (pH 6.5) and 0.04% formic acid in methanol in a gradient 

elution programme was developed using the systematic trials suggested by the software using QbD39. 

Quantification of artemisinin (1) to determine extraction efficiency19. 

Molecular imprinting method Molecularly imprinted membranes with multifunctional layers for the separation and purification of 

artemisinin (1) were constructed on porous chitosan membranes40. 

A biomimetic electrochemical sensor for the determination of artemisinin (1) in plant extracts and for 

pharmacokinetic studies. A novel molecularly imprinted polymer-based electrochemical sensor was 

developed by electropolymerization of o-phenylenediamine in the presence of artemisinin (1) on gold 

wire surface41. 
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TABLE 3 Some most popular and effective HPLC columns and solvent systems for artemisinin (1) analysis 

HPLC columns Solvent systems 

Luna 5 m C18, 250 x 4.6 mm, 

Phenomenex, USA 

Isocratic elution with 65% acetonitrile in water with a flow rate of 1 mL/min, monitored at 192 nm46,47. 

Betasil C18 5 m, 250 x 4.6 

mm, Thermo Fisher Scientific, 

USA 

Waters Bridge C18 5 m, 250 x 

4.6 mm, Waters, USA 

Gradient elution: 0–7 min, hold 60% of acetonitrile in water; 17–30 min, 60–100% of acetonitrile in water; 30–

35 min, 100% of acetonitrile. The detection wavelengths were 192, 210, 254, and 320 nm, the flow rate was 1 

mL/min, the injection volume was 5 mL, and the oven temperature was set 30oC18. XSelect CSH C18 5 m, 250 x 

4.6 mm, Waters, USA  

Cyan column, Luna CN 5 m, 

250 x 4.6 mm, Phenomenex, 

USA 

Isocratic elution with 50% methanol in water with a flow rate of 1 mL/min, at 35oC12, using a refractive index 

detector 

Discovery RP-C18, 5 m, 250 x 

4.6 mm, Supelco, USA. 

Isocratic elution with 50% methanol in water with a flow rate of 1 mL/min for 15 min, maintaining the column 

temperature at 303.1K, using a electrochemical detector13. 

LUBEX Ecosil ODS-3 column, 

50 x 2.1 mm, 5 m, 

Guangzhou, China 

The mobile phase A = 5% acetonitrile in water, and B = 95% acetonitrile in water; both phases had 10 mM 

ammonium acetate. In the LC gradient profile, the mobile phase B was 20% for 0.4 min and linearly increased 

to 100% from 0.4 to 0.6 to 0.6 min, maintained at this composition from 0.6 to 2.6 min, and returned to 20% 

from 2.8 to 3.0 min. The total running time was 4.0 min33. Flow rate was 0.25 mL/min. 

Zorbax XDB C18 3.5 m, 50 x 

2.1 mm, Agilent, UK 

The mobile phase was composed of 0.1% formic in water (A) and 0.1% formic acid in acetonitrile (B)34. A linear 

gradient was used at a flow rate of 0.50 mL/min as follows: 2% B at 0–0.50 min, 2–98% B at 0.50–3.00 min, 

98% B at 3.00–4.50 min, 98–2% B at 4.50–4.51 min, and 2% B at 4.51–6.00 min. The separation was carried 

out at 20oC. 

 


