1,889 research outputs found
p-wave Holographic Superconductors and five-dimensional gauged Supergravity
We explore five-dimensional and
SO(6) gauged supergravities as frameworks for condensed matter applications.
These theories contain charged (dilatonic) black holes and 2-forms which have
non-trivial quantum numbers with respect to U(1) subgroups of SO(6). A question
of interest is whether they also contain black holes with two-form hair with
the required asymptotic to give rise to holographic superconductivity. We first
consider the case, which contains a complex two-form potential
which has U(1) charge . We find that a slight
generalization, where the two-form potential has an arbitrary charge , leads
to a five-dimensional model that exhibits second-order superconducting
transitions of p-wave type where the role of order parameter is played by
, provided . We identify the operator that condenses
in the dual CFT, which is closely related to Super Yang-Mills
theory with chemical potentials. Similar phase transitions between R-charged
black holes and black holes with 2-form hair are found in a generalized version
of the gauged supergravity Lagrangian where the two-forms have
charge .Comment: 35 pages, 14 figure
Fermion correlators in non-abelian holographic superconductors
We consider fermion correlators in non-abelian holographic superconductors.
The spectral function of the fermions exhibits several interesting features
such as support in displaced Dirac cones and an asymmetric distribution of
normal modes. These features are compared to similar ones observed in angle
resolved photoemission experiments on high T_c superconductors. Along the way
we elucidate some properties of p-wave superconductors in AdS_4 and discuss the
construction of SO(4) superconductors.Comment: 49 pages, 11 figure
Simulation of Light Antinucleus-Nucleus Interactions
Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and
anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some
cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To
support the experimental studies of the anti-nuclei a Monte Carlo simulation of
anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The
implementation combines practically all known theoretical approaches to the
problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure
Refractive index in holographic superconductors
With the probe limit, we investigate the behavior of the electric
permittivity and effective magnetic permeability and related optical properties
in the s-wave holographic superconductors. In particular, our result shows that
unlike the strong coupled systems which admit a gravity dual of charged black
holes in the bulk, the electric permittivity and effective magnetic
permeability are unable to conspire to bring about the negative
Depine-Lakhtakia index at low frequencies, which implies that the negative
phase velocity does not appear in the holographic superconductors under such a
situation.Comment: JHEP style, 1+15 pages, 11 figures, version to appear in JHE
Holographic Superconductors from Einstein-Maxwell-Dilaton Gravity
We construct holographic superconductors from Einstein-Maxwell-dilaton
gravity in 3+1 dimensions with two adjustable couplings and the charge
carried by the scalar field. For the values of and we
consider, there is always a critical temperature at which a second order phase
transition occurs between a hairy black hole and the AdS RN black hole in the
canonical ensemble, which can be identified with the superconducting phase
transition of the dual field theory. We calculate the electric conductivity of
the dual superconductor and find that for the values of and where
is small the dual superconductor has similar properties to the
minimal model, while for the values of and where is
large enough, the electric conductivity of the dual superconductor exhibits
novel properties at low frequencies where it shows a "Drude Peak" in the real
part of the conductivity.Comment: 25 pages, 13 figures; v2, typos corrected; v3, refs added, to appear
in JHE
Quantum critical lines in holographic phases with (un)broken symmetry
All possible scaling IR asymptotics in homogeneous, translation invariant
holographic phases preserving or breaking a U(1) symmetry in the IR are
classified. Scale invariant geometries where the scalar extremizes its
effective potential are distinguished from hyperscaling violating geometries
where the scalar runs logarithmically. It is shown that the general critical
saddle-point solutions are characterized by three critical exponents (). Both exact solutions as well as leading behaviors are exhibited.
Using them, neutral or charged geometries realizing both fractionalized or
cohesive phases are found. The generic global IR picture emerging is that of
quantum critical lines, separated by quantum critical points which correspond
to the scale invariant solutions with a constant scalar.Comment: v3: 32+29 pages, 2 figures. Matches version published in JHEP.
Important addition of an exponent characterizing the IR scaling of the
electric potentia
A slice of AdS_5 as the large N limit of Seiberg duality
A slice of AdS_5 is used to provide a 5D gravitational description of 4D
strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory
in the conformal window at large N is described by the 5D bulk, while its
weakly coupled (magnetic) dual is confined to the IR brane. This framework can
be used to construct an N = 1 MSSM on the IR brane, reminiscent of the original
Randall-Sundrum model. In addition, we use our framework to study
strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces.
This leads to a unified scenario that connects the extra-ordinary gauge
mediation limit to the gaugino mediation limit in warped space.Comment: 47 Pages, axodraw4j.st
Towards the F-Theorem: N=2 Field Theories on the Three-Sphere
For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean
path integrals on the three-sphere can be calculated using the method of
localization; they reduce to certain matrix integrals that depend on the
R-charges of the matter fields. We solve a number of such large N matrix models
and calculate the free energy F as a function of the trial R-charges consistent
with the marginality of the superpotential. In all our {\cal N}=2
superconformal examples, the local maximization of F yields answers that scale
as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are
7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local
F-maximization is equivalent to the minimization of the volume of Y over the
space of Sasakian metrics, a procedure also referred to as Z-minimization.
Moreover, we find that the functions F and Z are related for any trial
R-charges. In the models we study F is positive and decreases along RG flows.
We therefore propose the "F-theorem" that we hope applies to all 3-d field
theories: the finite part of the free energy on the three-sphere decreases
along RG trajectories and is stationary at RG fixed points. We also show that
in an infinite class of Chern-Simons-matter gauge theories where the
Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at
large N. This non-trivial scaling matches that of the free energy of the
gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement
Unbalanced Holographic Superconductors and Spintronics
We present a minimal holographic model for s-wave superconductivity with
unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking
of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged
scalar field in a charged asymptotically AdS_4 black hole. The chemical
potential imbalance is implemented by turning on the temporal component of a
U(1)_B "spin" field under which the scalar field is uncharged. We study the
phase diagram of the model and comment on the eventual (non) occurrence of
LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and
"spin" transport, implementing a holographic realization (and a generalization
thereof to superconducting setups) of Mott's two-current model which provides
the theoretical basis of modern spintronics. Finally we comment on possible
string or M-theory embeddings of our model and its higher dimensional
generalizations, within consistent Kaluza-Klein truncations and brane-anti
brane setups.Comment: 45 pages, 15 figures; v2: two paragraphs below eq. (3.1) slightly
modified, figure 5 (left) replaced, references added; v3: typos corrected,
comments added, figure 12 replace
M-theory and Seven-Dimensional Inhomogeneous Sasaki-Einstein Manifolds
Seven-dimensional inhomogeneous Sasaki-Einstein manifolds
present a challenging example of AdS/CFT correspondence. At present, their
field theory duals for base are proposed only within a
restricted range as quiver Chern-Simons-matter
theories with gauge group, nine bifundamental
chiral multiplets interacting through a cubic superpotential. To further
elucidate this correspondence, we use particle approximation both at classical
and quantum level. We setup a concrete AdS/CFT mapping of conserved quantities
using geodesic motions, and turn to solutions of scalar Laplace equation in
. The eigenmodes also provide an interesting subset of Kaluza-Klein
spectrum for supergravity in , and are dual
to protected operators written in terms of matter multiplets in the dual
conformal field theory.Comment: v2 refs added. 19 pages 1 figur
- …
