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1 Introduction

Some of the most interesting challenges in condensed matter physics involve strongly in-
teracting systems of fermions and other components. The difficulty is to understand ‘non-
Fermi liquid’ (NFL) behavior, which is widely believed to require physics going beyond
weakly interacting fermions. Of particular interest are the thermodynamic and transport
properties of the ‘strange metal’ phases of heavy fermion compounds [1] and high tempera-
ture superconductors [2, 3]. A prime example of this is DC resistivity linear in temperature

– 1 –



J
H
E
P
0
4
(
2
0
1
0
)
1
2
0

Quantum critical
z

Charge carriers
Egap

self-

interactiondissipation

, Jt

Figure 1. Our model will describe probe charge carriers interacting with a quantum critical Lifshitz
bath. Parameters include the dynamical scaling exponent z, the energy gap Egap and density J t of
the carriers. Ultimately the charge-charge interactions are mediated by the Lifshitz sector.

over several decades of temperature T , with T much less than the chemical potential µ of
the system, e.g. [4]. Other aspects of strange metal phenomenology include possible non-
trivial power-law tails in the AC conductivity (σ(ω) ∼ ω−ν with ν 6= 1 over a range of
scales according to [5]) and anomalous behavior of the Hall conductivity, e.g. [6].

Even at the theoretical level, few (if any) calculations reproduce the observed behavior
in a controlled quantum field theory. In this work, we present some basic results in this
direction, exhibiting non-Fermi-liquid behaviors such as linear resistivity in a controllable
— though unrealistic — class of field theories with a holographic dual description. Another,
complementary, class of holographic systems with strange metallic behaviors appears in [7–
11]. We will comment on some similarities and differences between the two classes below.1

The holographic correspondence [12] provides powerful techniques for analyzing a class
of strongly coupled quantum field theories. It is natural to explore these theories at finite
charge density. At the very least this allows us to understand certain strongly correlated
many-body systems much better at a theoretical level, and this investigation may ultimately
lead to mechanisms for real world phenomena.2 Therefore, although current holographic
technology applies only to extreme limits of special quantum field theories, it is worthwhile
to study the physics of strongly interacting fermions and to investigate mechanisms for
strange metal behaviors in this context where reliable calculations can be made. What we
learn this way may also back react on our understanding of holography and string theory.

The theories we will study involve a sector of (in general massive) charge carriers, in a
state of nonzero charge density J t, interacting amongst themselves and with a larger set of
neutral quantum critical degrees of freedom. The logical structure is illustrated in figure 1.
The quantum critical sector has Lifshitz scale invariance with dynamical critical exponent
z. We begin with a brief summary of the scaling properties and renormalization-group
(RG) structure of such quantum field theories in section 2. In a dilute limit, J t � T 2/z,

1In particular, we will address the backreaction of the bulk fermi sea in [7–11] on the black hole solution

used in the analysis, and find a significant effect.
2For introductions to the holographic approach to finite density systems see [13–16].
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this structure leads to a simple formula for their resistivity in any dimension, ρ ∝ T 2/z/J t,
which is linear in temperature for z = 2. This however is not the regime of physical
interest — we will later recover the same formula dynamically in the opposite, physical,
limit J t � T 2/z. The scaling symmetry also implies that for z greater than or equal to
the spatial dimensality, a marginal or relevant interaction

∫
dtdd~xJ tJ t arises among charge

carriers. We then turn to a holographic analysis of such systems. We use probe ‘flavor
branes’ to model the sector of charge carriers, along the lines of the earlier work [17–20], but
now applied to a bulk theory with Lifshitz scaling [21] (see also [22]). (In our final section,
for (UV-)completeness we provide three methods for constructing Lifshitz fixed points from
the top down, obtaining z = 2 in the simplest examples.) After analyzing the holographic
manifestation of the renormalization-group structure, we compute the specific heat and
the DC, Hall, and AC conductivities of our system and comment on their similarities and
differences with respect to the corresponding results for strange metals.

This opens up some new directions, which we outline at various points in the present
paper. For example, we can analyze the basic scales in holographic superconductors in this
context, exploring the relationship between Tc, the dynamical critical exponent z which
determines the strange metallic behaviors, and other parameters. New model-building
possibilities suggest themselves as generalizations of our basic setup. In particular, having
determined the results for the basic transport coefficients in our Lifshitz field theories
coupled to charged flavors, we will find it useful to consider generalizations with running
couplings arising from radially rolling scalars on the gravity side of the holographic duality.
This suggests mechanisms for mixing and matching non-Fermi-liquid behaviors such as

ρ ∼ T ν1 and σ(ω) ∼ ω−ν2 , (1.1)

for different nontrivial exponents ν1 and ν2 (though in our simplest setup, ν1 = ν2). More-
over, there are many possibilities for multiple flavor sectors subject to gauge and global
symmetries which organize them into composites that might mock up various scenarios
for fractionalization of the electron. We leave for future work the detailed construction of
theories based on these mechanisms.

A key limitation of current holographic theories vis à vis the real world is that our
theoretical control arises in the unrealistic limit of a large-rank gauge symmetry, for ex-
ample U(Nc) Yang-Mills theory at large Nc. In the present case, we use an expansion in
Nf/Nc, where Nf is the number of charged flavors, in order to control the calculations.
One would ultimately hope for control of more realistic theories with mutually interacting
sectors without such large disparities.

2 Dimensional analysis, z and renormalization

We wish to study the thermodynamic and transport properties of charge carriers interacting
with a strongly coupled and scale invariant quantum field theory. The quantum critical
theory will be neutral under the charge. We will work in a limit in which the neutral
quantum critical theory has many more degrees of freedom than the charged ‘flavor’ sector.
This can be measured for instance using the free energy. So long as we stay within a range
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of density and scales where this ‘probe flavor’ description is valid, then the charge-carrying
flavors have a negligible effect on the state of the neutral sector. We will discuss regimes
of validity below, as well as give a critical assessment of the phenomenological relevance of
this limit.

Spatially isotropic scale invariance is characterized by the dynamical critical exponent
z [23]. The theory is invariant under space and time rescaling of the form

t→ λzt , ~x→ λ~x . (2.1)

This scale invariance is often called a Lifshitz invariance. Invariance under this scaling
forces physically meaningful observables to appear in specific ratios in order to be dimen-
sionless. This is usefully implemented by assigning time and space the following dimensions
of momentum

[t] = −z , [~x] = −1 . (2.2)

We can now work out the scaling dimension of various quantities of interest, which we
collect here for future reference. Throughout we work with ~ = kB = e = 1. The charge
and current densities have

[J t] = d , [ ~J ] = d+ z − 1 , (2.3)

where d is the number of space dimensions. The former follows from the definition of J t as
a density while the latter follows from charge conservation J̇ t +∇ · ~J = 0. The dimensions
of external scalar (Φ) and vector ( ~A) potentials are fixed by the fact that these appear
gauging derivatives. The dimensions of electric and magnetic fields then follow as

[Φ] = z , [ ~A] = 1 , [ ~E] = z + 1 , [ ~B] = 2 . (2.4)

The temperature and free energy both have dimensions of energy. This leads to the fol-
lowing dimensions for the specific heat and the magnetic susceptibility

[T ] = z , [F ] = z , [cV ] = d , [χ] = z − 4 . (2.5)

Finally, the dimensions of conductivity follow from Ohm’s law to be

[σ] = d− 2 . (2.6)

In particular, the conductivity is dimensionless in d = 2 spatial dimensions.
This simple dimensional analysis leads to the following statement. Consider a system

with an energy gap Egap to exciting charge carriers which is large compared to the temper-
ature. If the conductivity in a Lifshitz system is linear in the density J t of charge carriers,
then by the scaling given above we can conclude that the resistivity ρ = 1/σ scales like

ρ ∝ T 2/z

J t
. (2.7)
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This result is independent of the spatial dimension d. Here we are using the fact that
increasing the energy gap should not lead to larger conductivity in order to exclude sig-
nificant Egap-dependent contributions to (2.7). (Contributions to the conductivity which
decrease with Egap are negligible in the limit of large Egap/T .)

When the chemical potential µ � T , linearity of the conductivity in the density is
immediate: this regime corresponds to very low density, where the conductivity is lin-
ear in J t because it is simply the sum of the individual contributions of non-interacting
charge carriers.

However, we will also find, using the approach of [17], that in an extreme limit of
holographic systems with probe flavor branes the result (2.7) persists for µ� T , which is
the regime of interest for strange metal phenomenology. Here the self interactions of the
charge carriers are non-negligible. The linearity of the conductivity as a function of charge
density in these more general cases may arise because in the probe limit µJ t � FQCT, where
FQCT is the free energy of the quantum critical theory (QCT) into which the momentum
of the charge carriers is dissipated. Roughly speaking, the interactions among the charge
carriers may be a subdominant effect on the (DC) resistivity, even though these interactions
are important enough to preclude a quasiparticle interpretation of the charge carriers.
We will make this statement a little more precisely below, suggesting that it is related
to the fact that without the neutral QCT ‘medium’ to carry away momentum, the DC
conductivity would be infinite. The mobility σ/J t as a function of doping has been studied
experimentally in e.g. [24], exhibiting weak dependence that may be consistent with (2.7).3

Note that in contrast to single-scale models such as that discussed in [25], where J t is taken
to scale with temperature as T d/z, in our system J t is an independent scale.

In fact, independently of the holographic correspondence, we can see from the RG
structure of our theory that interactions among charge carriers will necessarily be important
in the case z ≥ d. The dimension of J t being d, the operator J tJ t becomes marginal at
z = d, and relevant for z > d. For d = 2 — the dimensionality of interest for many
unconventional real materials such as high-Tc superconductors — this transition happens
at z = 2, the value of z for which the resistivity is linear. In general, for z ≥ d, this operator
is important at low energies in our theory, leading to additional interactions among charge
carriers. As a relevant operator for z > d, its coefficient is naturally at the UV cutoff scale
of the system.4

3 Probe D-branes in IR scaling geometries

We are primarily interested in the low temperature and low energy behaviour of the theory.
Low temperatures and energies will be defined with respect to some energy scale: T,E �
ΛUV. In particular, we will restrict attention to theories for which the neutral sector we
defined above becomes quantum critical at these low energies. Here ΛUV should presumably
be of order the lattice scale (i.e. electron volts), although this may be larger than the

3We thank S. Kivelson for pointing this paper out to us.
4One could formally introduce counterterms to cancel this divergence, but this would constitute a fine

tuning in our system. We discuss this fact in some detail in section 4 below.
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melting temperature of the solid, allowing scaling laws to persist up to the melting point,
as in e.g. [4]. Quantum criticality means that there are no intrinsic scales in the low energy
(IR) theory, the only scales will be external: temperature T , electric and magnetic fields
E,B and the density of charge carriers J t. Later we will add an energy gap scale Egap for
the charge carriers. In the systems we study, we will see that for J t 6= 0, our window of
control in which the charge carriers do not back react on the geometry does not extend all
the way into the infrared (as long as all parameters are finite), but still covers a wide range
of scales in our probe approximation.

For concreteness, and with a view to ultimately connecting to interesting experimental
systems, we focus on 2+1 dimensional field theories, with 3+1 dimensional bulk duals. The
dual IR geometry therefore takes the following form at zero temperature [21]

ds2
IR = L2

(
−dt

2

v2z
+
dv2

v2
+
dx2 + dy2

v2

)
. (3.1)

This metric realises the scaling symmetry (2.1) as an isometry, together with v → λv.
The radial coordinate therefore has dimensions of length and extends from the (singular)
‘horizon’ v = ∞ to the ‘boundary’ v = 0. We will require the above metric to give the
correct physics for a window of radial positions v satisfying

vbr � v � ε ≡ 1

Λ1/z
UV

. (3.2)

where vbr is an infrared ‘backreaction’ radial scale at which our probe approximation breaks
down; we will quantify this shortly. We will implement the UV cutoff approximately by
taking the metric (3.1) to be valid up to v = ε and imposing boundary conditions there.

The full background will generally have nonzero matter fields supporting the met-
ric (3.1), such as those described in [21]. Furthermore, when embedded into a consistent
quantum gravity theory, such as string theory, there may be additional spatial dimensions
to those shown. We will outline three classes of examples of string-theoretic constructions
of infrared Lifshitz geometries later in the paper.

When placed at a finite temperature the metric can be written as

ds2
IR = L2

(
−f(v)dt2

v2z
+

dv2

f(v)v2
+
dx2 + dy2

v2

)
. (3.3)

The precise form of f(v) will depend on the theory and various solutions of this form have
been constructed [26–29]. All we will require is the presence of a horizon, f(v+) = 0, which
defines the temperature

T =
|f ′(v+)|
4πvz−1

+

∝ 1
vz+

. (3.4)

In the second relation there is an order one number which we do not know explicitly unless
f(v) is given. Our normalisation is such that at the boundary f(0) = 1. In order to
maintain control over our calculations, we may consider cases in which the infrared back
reaction scale vbr is cloaked by a black hole horizon: vbr > v+.
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We now turn to the dynamics of a probe D-brane in the background (3.3). The
background describes a quantum critical theory; we are interested in the physics of a small
number of charge carriers interacting with this theory. By a ‘small number’ here we mean
that the carriers do not backreact on the quantum critical system. As we will emphasize,
this does not imply that the charge carriers are weakly interacting amongst themselves; in
general they will have significant interactions mediated by the quantum critical sector. A
probe Dq brane is described by the Dirac-Born-Infeld (DBI) action

Sq = −Tq
∫
dτdqσ e−φ

√
|?g + 2πα′F | . (3.5)

The nonlinearity of this action in the field strength F encodes the interactions between
carriers. The particular form of the action is partially motivated by string theory. It
is therefore to some extent a UV input from the bulk point of view, and it would be
interesting to explore alternative actions to isolate the key features that underly the results
we present below. In general the Dq brane can also have Chern-Simons like couplings to
bulk field strengths. We will ignore these for the moment. In (3.5) ?g is the pullback of
the metric (3.3), F = dA is the field strength of a worldvolume U(1) gauge field and e−φ

is the dilaton. In order for the background solution to respect the scale invariance, φ and
Tq must be constant in the IR region.

We look for an embedding given by

τ = t , σ1 = x , σ2 = y , σ3 = v , {σ4 . . . σq} = Σ , (3.6)

together with the gauge potential

A = Φ(v)dt+Bxdy . (3.7)

In (3.6), Σ refers to a submanifold of an internal space. If the background spacetime is a
direct product of (3.3) with an internal space M , the simplest way to solve the equations
of motion is for Σ to be a stationary submanifold of M , independent of {t, x, y, v}. Many
backgrounds of interest are not direct products and many probe brane embeddings of
interest are not constant in the internal directions. Nonetheless, for the moment we will
take a ‘phenomenological’ approach and consider that the only effect of internal dimensions
is to multiply the overall Dq brane action by the volume of Σ. The effective brane in 3 + 1
dimensions thus has tension

τeff. = TqVol(Σ)e−φ . (3.8)

The assumption in (3.6) that the D-brane does not bend into the transverse dimensions
will shortly translate into the assumption that the charge carriers are gapless. While this
may be relevant for materials with a Dirac-cone dispersion relation for electronic excitations
(along the lines of graphene), or other situations in which there are emergent gapless charge
carrying excitations, in general we will wish to consider massive charge carriers. We will
consider the massless case first for simplicity, and generalise to the massive case in section 6.
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It is straightforward to solve the equations of motion for Φ to obtain

Fvt = Φ′ =
1

v1+z

C√
v−4 +

(
2πα′

L2

)2
(B2 + C2)

, (3.9)

where C is a constant of integration. Near the boundary v → 0 the potential is expanded as

Φ = µ− 1
vz−2

C

z − 2
+ · · · , (3.10)

for z 6= 2 and

Φ = µ+ C log
v

Λ
+ · · · , (3.11)

when z = 2. In this last case µ has a scheme dependence on a scale Λ. We think of µ as
the chemical potential, although for z ≥ 2 it is not the largest mode near the boundary.
We will discuss this phenomenon in detail in the following section. The coefficient C is
proportional to the charge density,

J t = τeff(2πα′)2C , (3.12)

as one reads off from the boundary term that arises upon varying the action with respect
to δA(0)

t = δµ.
Evaluating the action on this solution gives,

TSq
V2

= −τeff.L
4

∫ v+

ε
dv

1
v1+z

v−4 +B2

√
v−4 +B2 + C2

. (3.13)

Here V2 is the spatial volume. In this and the following few expressions, we will drop the
factors of 2πα′

L2 that appear multiplying B and C. Expanding the integrand for small v, the
contribution from the UV endpoint is

TSq
V2

= τeff.L
4

(
− 1
z + 2

1
εz+2

+
C2 −B2

2(z − 2)
1

εz−2
+
B4 − 3C4 − 2B2C2

8(z − 6)
1

εz−6
+ · · ·

)
(3.14)

for z 6= 2. For z = 2 we have

TSq
V2

= τeff.L
4

(
−1

4
1
ε4

+
B2 − C2

2
log

ε

Λ
+ · · ·

)
. (3.15)

For all positive z the leading term is divergent as ε → 0. This term is independent of
the temperature and all other parameters, and reflects the fact that the energy density is
dominated by UV physics. For the relativistic case, z = 1, this is the only divergence, but
for z ≥ 2 the second term diverges as well. The coefficient of this divergence depends on
the magnetic field and charge density. Again, naturalness requires that we include this as
representing a UV sensitivity of the physics. In the next section we will analyze why a di-
vergence appears at z = 2, and why additional such effects appear as z is increased further.

When we vary the action to obtain the specific heat and other observable quantities,
depending on the application we may wish to hold fixed either the charge density J t or
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the chemical potential µ. In our setup we can implement a fixed J t by adding the familiar
‘Neumannizing’ term [30]. In the following section we will discuss boundary conditions in
some detail and note that for z > 2 fixed charge is in fact the ‘natural’ boundary condition
in a renormalisation group sense. The free energy is then

f ≡ F

V2
=
TSq
V2

+ µJ t . (3.16)

By integrating (3.9) from the horizon, where Φ = 0, to near the boundary and comparing
to (3.10), we obtain

µJ t =
τeff.L

4C2

(z − 2)vz−2
+

2F1

(
1
2
,
2− z

4
,
6− z

4
,−(B2 + C2)v4

+

)
. (3.17)

For the case z = 2 one has instead

µJ t =
τeff.L

4C2

2
log

1 +
√

1 + (B2 + C2)v4
+

Cv2
+

 . (3.18)

where we have partially fixed the scheme dependence by requiring that this quantity re-
mains finite as v+ →∞.

With fixed charge, the divergences appearing in the free energy (3.14) are temperature
independent. The following difference of free energies is then finite

∆f ≡ f(T )− f(0) (3.19)

= −τeff.L
4

∫ v+

∞
dv

1
v1+z

v−4 +B2

√
v−4 +B2 + C2

+ (µ(T )− µ(0))J t (3.20)

= τeff.L
4

(
1
z

√
B2 + C2

1
vz+

+
1

2(z + 4)
√
B2 + C2

1
v4+z

+

+ · · ·

)
as v+ →∞

∝ τeff.L
4

(√
B2 + C2T +

1√
B2 + C2

T 1+4/z + · · ·
)
. (3.21)

In the last line we have not kept track of numerical coefficients, as we do not know the
precise relation between v+ and the temperature T . The full integral in (3.20) may be
performed in terms of hypergeometric functions. However it is clear, as emphasised in [20],
that the low temperature free energy only depends on the zero temperature metric at
v = v+.

It is now simple from (3.21) to compute the specific heat. The specific heat divided
by temperature is

cV
T

= − ∂
2f

∂T 2
. (3.22)

The linear term in (3.21) will drop out upon taking two derivatives, leaving the second
term. Setting B = 0, this gives the specific heat

cV
T
∝ −τ2

eff L
6 α′

T 4/z−1

J t
. (3.23)
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Here we restored the α′ factors. This is the leading small-T behavior at fixed J t. Within the
probe approximation, to be made precise shortly, this scaling will always be subdominant
to the thermodynamics of the Lifshitz sector.

The magnetic susceptibility

χ

V2
= − ∂

2f

∂B2
, (3.24)

has a UV sensitivity through f(0) if z ≥ 2. This gives a temperature independent term.
At low temperatures from (3.19) and (3.21)

χ

V2
∝ −τeff. L

2 α′2
(

1
L2

Λ1−2/z
UV + τeff. α

′ T

J t

)
. (3.25)

where we have set B to zero after differentiating. The dependence on the UV scale is
logarithmic when z = 2. In the absence of the UV divergence, the temperature independent
term is proportional to (J t)z/2−1. We have not been careful with the relative normalisation
of the two terms in (3.25).

Let us consider the regime of control of our system (3.5). There are two issues to
address. The first is the neglect of backreaction of the brane onto the metric. In our
background, the effective action Sq takes the form (with 2πα′ = 1)

Sq = −τeff.

∫
dt d2x dv

√
−g
√

1 + gttgvvF 2
vt + gttgxxF 2

tx + gvvgxxF 2
vx . (3.26)

To avoid back reaction of the probe on the metric, its stress-energy must be smaller than
the stress energy generating the original background (3.1). The original energy density
is of order M2

4 |Λ| ∼ M2
4 /L

2, where M4 is the four-dimensional Planck mass and Λ the
four-dimensional cosmological constant. Varying (3.26) with respect to gtt, we find this
condition to be

γ ≡ 1 + gvvgxxF 2
vx√

1 + gttgvvF 2
vt + gttgxxF 2

tx + gvvgxxF 2
vx

� M2
4 |Λ|
τeff.

. (3.27)

In our solutions γ approaches one at the boundary and grows toward larger v, the region
corresponding to the infrared regime of the field theory. As long as the brane tension is
sufficiently small, the right hand side allows for a window of scales in which γ can grow
larger than one (leading to nontrivial DBI dynamics, corresponding to interactions between
the charge carriers) while satisfying the condition (3.27). This is the regime vbr � v of
equation (3.2).

In the simplest examples of brane probes, such as those discussed in [20], the probe
limit requires a power law tune Nc/Nf � 1 where Nc is the rank of the Yang-Mills gauge
group of the field theory, and Nf the number of charged matter fields (the number of probe
branes). More generally in the landscape, however, low-tension branes can arise naturally
— via an exponential hierarchy — in compactifications with strong warping (gravitational
redshift) in the extra dimensions. This effectively makes the internal volume Vol(Σ) small
in the tension (3.8).
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There is another way that the description can break down at large γ. As γ gets large
the electric field on the brane is approaching its critical value, where the force on string
endpoints exactly balances the string tension [31–33]. Beyond this point the system is
unstable to creation of open strings. As the critical field is approached, the effective value
of the open string tension falls as 1/γ2 [34, 35] and so the effective string length scale
grows as γ. When this exceeds the typical length scale of the geometry, supergravity will
break down in an interesting way as string modes become important. The condition for
supergravity to be valid is then

α′γ2 � 1/|Λ| . (3.28)

The conditions (3.27) and (3.28) are compatible with one another but independent. We can
go to a regime where the first is satisfied but the second is not; this appears to correspond
to a situation where the backreaction of the charges on the critical sector is small, but
their interaction with each other due to finite density has become stronger than their
’t Hooft coupling interactions (setting for instance |Λ|α′ = λ−1/2). In general, as we
approach this regime, an expansion in small perturbations about the DBI action (3.26)
brings down inverse powers of the square root, i.e. powers of γ, leading to strong non-
Gaussian effects [36]. It would be interesting to understand the role of these effects in
holographic condensed matter systems.

4 Renormalization and Lifshitz holography

We would like to understand in a more general way the divergences that we encountered
with increasing z in section 3.5 For simplicity we focus on the quadratic Maxwell action,
which governs the dominant behavior of the full action (3.26) near the boundary,

S ∝ −
∫
dt ddx dv v−d−z−1

(
1
2
v2+2zF 2

ti −
1
2
v4F 2

iv +
1
2
v2+2zF 2

tv −
1
4
v4F 2

ij

)
. (4.1)

For the dominant boundary behavior we can ignore i and t derivatives in the field equations.
With the pure Liftshitz background (3.1) this gives the equations of motion

∂v(v1+z−d∂vAt) = ∂v(v3−z−d∂vAi) = 0 , (4.2)

with solutions

At = α+ βvd−z , Ai = α′ + β′vd+z−2 . (4.3)

In this limit Av is pure gauge. The field strengths scale as

Fti ∼ α+ βvd−z + α′ + β′vd+z−2 ,

Fij ∼ α′ + β′vd+z−2 ,

Ftv ∼ βvd−z−1 ,

Fiv ∼ β′vd+z−3 . (4.4)
5For a recent work on Lifshitz holography see [37].
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We now focus on d = 2. In the relativistic case z = 1, the α and α′ solutions are larger
at the boundary v → 0. We thus take the usual quantization, in which these are fixed
while β and β′ are dynamical. That is, we fix the potentials and field strengths tangent to
the boundary. At z = 1, all terms in the action are convergent at v → 0. As we increase
z, at z ≥ 2 the F 2

ij term has a divergence proportional to α′2, and the F 2
tr term has a

divergence proportional to β2, and new boundary counterterms are needed to obtain a
finite on shell action.

To understand these divergences from the point of view of the field theory, recall the
momentum (inverse length) dimensions from section 2

[J t] = d , [J i] = d+ z − 1 , [At] = z , [Ai] = 1 . (4.5)

The field theory contains an explicit AµJµ interaction, but will generate additional diver-
gences for any gauge-invariant relevant interaction constructed from A and J . Here A is
treated as a nonfluctuating spurion field, while J is a single trace operator, and the new
counterterms will in general involve multiple traces. The field theory volume element has
[dt ddx] = −d− z, so an interaction will be relevant if its momentum dimension is less than
or equal to d + z. The dimension of F 2

ij is 4, so this becomes relevant at d + z = 4. The
dimension of (J t)2 is 2d, so this becomes relevant when d = z. For d = 2, the critical z is
2 for both operators.

The divergence from F 2
ij involves the fixed α′, so this is just an additive classical

term. It reflects the fact that the dominant momentum-, temperature-, and frequency-
independent magnetic susceptibility will come from the UV when z > 2. We saw this in
equation (3.25) above.

The divergence from F 2
tr at z > 2 is more subtle. At the same time that (J t)2 becomes

relevant, the α and β solutions cross, and the latter dominates at the boundary v → 0.
Thus we are in the situation discussed for relativistic scalars in ref. [38]. For a generic UV
theory we will flow to the more stable boundary condition in which α is dynamical and β

is fixed.6

It is tempting to ‘renormalize’ the low energy effective theory, adding boundary coun-
terterms to cancel the divergences. In the range 2 < z < 4 the following counterterms
would do the job

Sbdy. =
1
g2

eff.

∫
ε
dt d2x

√
|?γ|

[
1

z + 2
+
ζ

2
(
FijF

ij − FtvF tv
)]

, (4.6)

In this expression g2
eff. = 1/τeff(2πα′)2, ζ = 1/(z − 2), and ?γ is the induced metric on

the r = ε surface. For the field-independent and F 2
ij terms this just subtracts off the UV

contribution and isolates that from the IR. For the FtvF tv term, however, the boundary
terms actually change the theory, from the IR stable β = 0 theory to the tuned α = 0
theory. To see this, perform the variation of the bulk and boundary action with respect to

6Ref. [39] studied the 2+1 dimensional relativistic (z = 1) gauge theory and showed that it had two IR

stable realizations, the second corresponding to the gauging of the U(1) symmetry.
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At, and insert the asymptotics (4.3) to obtain

δS = e.o.m.− 1
g2

eff.

∫
ε
dt d2x

√
|?γ|gvv(δAt + ζ∂vδAt)F tv

∝ {δα+ (1 + (2− z)ζ)ε2−zδβ}β . (4.7)

We see that precisely the value ζ = 1/(z − 2), that cancels the divergence, also gives the
tuned α-fixed theory. Throughout this paper we work with the untuned, β-fixed, theory.
This has no boundary counterterms. We argued in the previous section that this fixed
charge ensemble is in fact the physically correct one for condensed matter applications of
holography, for all values of z.

The difference between the α- and β-fixed theories is subtle: in the planar limit, only
the correlators of J t are affected by the double trace deformation [40], so most observables
are the same. Intuitively, a large (J t)2 interaction would inhibit local fluctuations of J t,
explaining why β must be fixed.

The expansions (4.3), (4.4) have have higher order terms, e.g. at relative order k2v2,
which will lead to further divergences as we increase z. In the field theory, this is reflected
by the operators F 2

ij,k and (J t,k)
2 becoming relevant at z = 4. As z is further increased,

higher spatial derivatives become relevant, so that in the z →∞ limit of AdS2 ×R2 there
is an infinite number of relevant operators. Note however that terms with additional time
derivatives never become relevant. Higher powers of the fields can become relevant, e.g.
(FijFij)2, FijFij(J t)2 and (J t)4 at z = 6.

5 Massless charge carriers

A key observable capturing strange metallic behavior is the conductivity. We will start
by analyzing the DC conductivity of our system, following closely the work of Karch and
O’Bannon [17], keeping the full nonlinear dependence of the current resulting from a given
constant electric field. Using similar methods [41] we also compute the Hall conductivity.
Then we will obtain the optical conductivity by computing the linearized response of the
system to small oscillating electric field perturbations. We focus first in this section on
the massless case, to illustrate the techniques. Then in the next section we will include
a mass for the charge carriers, motivated by the large energy gap of carriers relative to
temperature in real-world strange metals.

5.1 DC conductivity

In order to compute the DC (ω = 0) conductivity, the strategy is to turn on an electric field
E ≡ Ftx on the D-brane probe and compute the resultant current 〈Jx〉 in the boundary
theory. This then allows us to directly read off the field and temperature dependent
conductivity σ(E, T ) from Ohm’s law

Jx = σ(E, T )E . (5.1)

To this end, we revise the ansatz (3.7) for the worldvolume gauge field, now looking for
solutions of the form

A = Φ(v)dt+ (−Et+ h(v))dx . (5.2)
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With this ansatz, the action (3.5) becomes

S = −τeff

∫
dt d2x dv

√
gxx
√
−gttgxxgvv − (2πα′)2 (gvvE2 + gxxΦ′ 2 + gtth′ 2) . (5.3)

The action depends only on the derivatives Φ′ and h′, resulting in two quantities which are
independent of the radial direction v,

C =
−g3/2

xx Φ′√
−gttgxxgvv − (2πα′)2 (gvvE2 + gxxΦ′ 2 + gtth′ 2)

,

and

H =
−gtt
√
gxx h

′√
gttgxxgvv − (2πα′)2 (gvvE2 + gxxΦ′ 2 + gtth′ 2)

. (5.4)

These are the same expressions found in [17] and, as pointed out by those authors, obey
the relation gtth′C = gxxΦ′H. The near-boundary profile of Φ is once again given by (3.10)
for z 6= 2 and (3.11) for z = 2. Meanwhile, the asymptotic behavior of h(v) is

h(v)→ h0 +
H

z
vz + . . . . (5.5)

We set h0 = 0 and identify the coefficient of the decaying term with the current

Jx = τeff(2πα′)2H . (5.6)

This equation is completely analogous to that defining the charge density in (3.12). The
normalization factor of 1

z in (5.5) follows from computing Jx as the derivative of the on-shell
action with respect to h0. The on-shell bulk action (5.3) can be written as,

S = τeff

∫
dtd2xdv g3/2

xx

√
−gttgvv

[
gttgxx + (2πα′)2E2

(2πα′)2(gttC2 + gxxH2) + g2
xxgtt

]1/2

. (5.7)

The divergences (UV sensitivities) of this expression are as discussed in the previous sec-
tions, and do not involve E.

As pointed out in [17], both the numerator and the denominator of [. . .]1/2 change sign
between the boundary v = 0 and the horizon v = v+ (recall that gtt < 0). The reality
of the action means that this sign change must take place at the same point in the radial
direction, v+ > v? > 0, such that both

− gttgxx
∣∣∣
v=v?

= (2πα′)2E2 , (5.8)

and

(2πα′)2
(
gttC

2 + gxxH
2
)

= −g2
xxgtt

∣∣
v=v?

, (5.9)
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should be satisfied.7 Using the finite temperature metric (3.3), the first of these equations
fixes v? in terms of the electric field,

f(v?) =
(

2πα′

L2

)2
E2 v2z+2

? . (5.10)

Meanwhile, the second equation can be rewritten to give the sought-after equation for the
conductivity,

σ(E, T ) =

√
(2πα′)4τ2

eff +
(

2πα′

L2

)2
v4
?(J t)2 . (5.11)

The right-hand-side of (5.11) is the root-mean-square of two terms: the first is a constant
piece and arises from thermally produced pairs of charge carriers. It is expected to be
Boltzmann suppressed when the charge carriers have large mass, as we will see shortly.
The surviving term exhibits the simple power-law (2.7) for the DC resistivity, namely

ρ ∼ T 2/z

J t
. (5.12)

As discussed in section 2, one situation in which this behavior is generic is a regime of
dilute charge carriers which are coupled to a Lifshitz bath in such a way as to inherit its
scaling symmetry (2.1). The diluteness of the charge carriers implies that the conductivity
is approximately linear in J t and the rest follows from dimensional analysis. However, here
we see that the linearity in J t arises in the massless case only in the concentrated (i.e.
non-dilute) regime J t � T 2/z, while in the very massive case it arises for all J t/T 2/z in
the DC conductivity. We will discuss this further below.

The first term in (5.11) is independent of both temperature T and electric field E.
This is due to the fact we are in a 3 + 1 dimensional bulk, rather than any Lifshitz scaling.
This same constant term was seen in section 5 of [17]. The second term on the right hand
side contains the dependence on the temperature and on the electric field. Both of these
arise through v? defined in (5.10). To compute the nonlinear, E dependent corrections to
the conductivity, we need to know the specific function f(v), which will depend on the the
matter content sourcing the Lifshitz background. On dimensional grounds, such corrections
depend on the ratio (2πα′)2

L4
E2

T 2+2/z . In the relativistic case (z = 1), the nonlinearities of the
conductivity in the electrical field could be elegantly understood by considering the drag
force on a single string and using Lorentz invariance [17]. This does not appear to be the
case at general z.

A translationally invariant medium with a net charge density should have an infinite
DC electrical conductivity. Specifically, the real part should have a delta function and the
imaginary part should have a pole: σ(ω) ∼ δ(ω)+ i ω−1 at small ω. This can be seen either
directly from hydrodynamics or via the holographic correspondence (e.g. [42, 43]). The
underlying reason is that the conserved momentum cannot relax and, combined with a net

7It might appear that a boundary condition is being imposed at the point v?, rather than the horizon,

but in fact this is equivalent to the usual condition of ingoing b.c. on the horizon. One can study this by

approximating the near-horizon geometry as Rindler, for which a finite ingoing wave satisfies the DBI field

equation, and then taking the zero frequency limit. Outgoing b.c. give the opposite sign for H.
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charge density, this gives a current that does not relax. Yet we have just obtained a finite
DC conductivity. The reason for this [17] is that in the probe limit the momentum can be
transferred to the quantum critical ‘bath’ without any backreaction on the charged probe
system. Technically, the coefficient of the divergence goes to zero in the probe limit, so that
the probe and ω → 0 limits do not commute. A physical circumstance in which this probe
approximation could be legitimate is if the quantum critical excitations are more efficient
at dissipating heat into the environment (via interaction with impurities etc.) than the
charge carriers.

The fact that the DC conductivity would diverge in the absence of the Lifshitz bath
suggests a heuristic understanding of why this conductivity is linear in the charge density,
if the first, constant, term in (5.11) is taken to be Boltzmann suppressed. This is not
an immediate result as interactions between the charges are important as evidenced, for
instance, by the nonlinear dependence of the free energy (3.13) on the charge density. The
fact that the Lifshitz medium is responsible for making the potentially infinite conductivity
finite suggests that medium-carrier interactions are playing a dominant role in the DC limit.
The diluteness of the carriers with respect to the medium then suggests that this interaction
will be proportional to the density of carriers, leading to the linear dependence of the finite
DC conductivity on J t. To check this logic, it is of interest to understand to what extent
the linearity in the density is sensitive to the choice of DBI action. For instance, a possibly
important and characteristic feature of the DBI action is a maximal field strength.

5.2 DC Hall conductivity

The techniques of [17] can be extended to compute the conductivity tensor,

J i = σijEj . (5.13)

The calculations are identical to those of [41] and we present only the results. The con-
ductivity is once again expressed in terms of a function v?(T,E,B), defined by the require-
ment that

− gttg2
xx = (2πα′)2(gttB2 + gxxE

2)
∣∣∣
v=v?

, (5.14)

which generalizes (5.8). For E and B small, this gives v? ∼ v+ ∼ 1/T 1/z. Corrections to
this expression are functions of the dimensionless ratios E/T 1+1/z and B/T 2/z. The Hall
conductivity has a simple expression in terms of v?,

σxy = − J tBv4
?

( L2

2πα′ )
2 +B2v4

?

. (5.15)

Notice that the Hall conductivity is automatically linear in charge density. When both B

and E are small, this becomes σxy ∼ T−4/z. The expression for σxx is

σxx =
1

1 + (2πα′

L2 )2B2v4
?

√
(2πα′)4τ2

eff[1 + (2πα′

L2 )2B2v4
?] + (2πα′

L2 )2(J t)2v4
? . (5.16)
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It’s simple to see that this reduces to our previous expression when B = 0. In particular,
when the J t term dominates in the square root, and B is small, then we reproduce the
result σxx ∼ v2

? ∼ T−2/z.
Among the interesting, anomalous, results exhibited by strange metals is the ratio

σxx/σxy. The anomalous behavior (σxx)−1 ∼ T is accompanied in the cuprates by the
scaling σxx/σxy ∼ T 2 (e.g. [6]). This is to be contrasted with Drude theory8 which implies
σxx/σxy ∼ (σxx)−1. Within our probe calculation, this ratio is given by

σxx

σxy
= −

(
L2

2πα′

)2 1
J tBv4

?

√
(2πα′)4τ2

eff[1 + (2πα′

L2 )2B2v4
?] + (2πα′

L2 )2(J t)2v4
? . (5.17)

The relevant experimental limit for the ratio is when the first term is subdominant in the
square root, leading to σxx/σxy ∝ T 2/z ∼ (σxx)−1. We see that this aspect of the probe
computation does not reveal strange behavior, but rather mimics the Drude result. In
a later model-building section we will consider generalizations of the setup which might
evade this conclusion.

5.3 AC conductivity

Let us next calculate the frequency dependent conductivity. In this case, we will focus on
the linear response rather than working out the full nonlinear dependence on the electric
field as we did in the DC case. To do this, we will expand in small fluctuations about
the background (3.9), working at zero magnetic field (B = 0) and zero momentum for
simplicity. As before we extract the conductivity from the ratio of non-normalizable and
normalizable modes of Ax near the boundary v → 0, having introduced a background
electric field Ex(t) ≡ ReEx(ω)e−iωt:

Ax(ω) =
Ex(ω)
iω

+
Jx(ω)

zτeff.(2πα′)2
vz + · · · . (5.18)

The coefficients in this expansion will be determined by solving the bulk equations of
motion, with the ratio between the response Jx and the source Ex obtained from a boundary
condition at the horizon ensuring that the former is determined causally (via the retarded
Green’s function) from the latter. The implementation of ingoing boundary conditions at
the horizon [44] is by now standard, see e.g. [13] for a discussion.

The fluctuations of the probe gauge fields take the form

δA = (At(v)dt+Ax(v)dx+Ay(v)dy)e−i(ωt−kx) . (5.19)

The quadratic action for fluctuations about the background solution (3.9) is found to be

S(2) = −τeff.(2πα′)2

2

∫
dvd3x v1−zγ

(
fF 2

vi −
v2z−2

f
F 2
ti − v2z−2γF 2

tv +
1
γ
F 2
xy

)
, (5.20)

8Recall that in Drude theory: σxx = e2n
mτ

1
τ−2+e2B2m−2 while σxy = e3nB

m2
1

τ−2+e2B2m−2 . Thus σxx

σxy
=

m
eBτ

= Ben
σxx(B=0)

.
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where γ is defined as

γ =

√
1 +

(
2πα′

L2

)2
C2v4 , (5.21)

as in (3.27) and i runs over x and y.
For simplicity, we specialize to the case k = 0, applicable when the applied field has

wavelength much longer than the mean free path of charge carriers. In this case, the
equations of motion for the transverse and longitudinal fields are the same; let us focus on
the longitudinal (x-) component.

v1−zf
(
v1−zγfA′x

)′ = −γω2Ax . (5.22)

It is useful to map this equation into a Schrödinger form

− d2Ψ
ds2

+ UΨ = ω2Ψ . (5.23)

This is achieved with the change of variables

Ax =
1
γ1/2

Ψ , (5.24)

with

d

dv
=
vz−1

f

d

ds
, (5.25)

leading to the potential

U =
(γ − 1)f
γ2v2z

(
(γ + 1)

(
1− z +

3
γ2

)
f + vf ′

)
. (5.26)

The AC conductivity is obtained by imposing ingoing boundary conditions at the horizon
s→∞, ensuring a causal relationship between Ex and Jx. We will shortly present numer-
ical results for the conductivity, after commenting on some of the physics evident from the
above formulae.

The potential U (5.26) exhibits different behavior for different ranges of charge density
C and z. At zero charge density, C = 0, we have γ = 1 and the potential vanishes. It is
then straightforward to solve analytically for σ(ω), which is nonzero and constant at all
temperatures

σ(ω) = τeff.(2πα′)2 ≡ σ0 . (5.27)

In the absence of any ambient charge density, the current can only arise from thermal
fluctuations or particle production. The constancy of the result, technically following from
the absence of scattering when U = 0, reflects more than just the scaling symmetry of
our system. General quantum critical theories in 2+1 dimensions have a conductivity
σ(ω/T ) that tends to different constant values as ω → 0 and ω → ∞ [45]. The frequency
independence here is related to additional symmetries of the Maxwell and DBI actions [46].
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The above C = 0 result is for massless charge carriers. However, in the real world
systems we are ultimately interested in modeling, the effective energy gap Egap of the
charge carriers is often greater than the temperature, and the current resulting from their
thermal production should be Boltzmann suppressed. Their mass is also often greater
than the frequency scale ω ∼ 103 − 104cm−1 ∼ 10−1 − 1eV of the electric field applied
in the relevant measurements (see Fig 14 of [47] for an example in the cuprates). So
their dynamical production by the oscillating electric field should also be suppressed. As
a result, we do not expect the order one constant value we just obtained in our C = 0
massless calculation to survive in a more realistic treatment. We will study the massive
case in the next section.

Having made this cautionary remark, let us continue to analyze the physics of the
solution. The potential U of (5.26) approaches zero at the horizon. As we approach the
boundary v → 0, U becomes of order C2v4−2z. For z < 2, the potential is everywhere
bounded, and approaches zero at the boundary. For z = 2, U approaches a constant value
of order C2 at the boundary, and for z > 2 the potential blows up at the boundary. Again
z = 2 is a marginal case separating two behaviors.

The regime (2πα′)2

L4 C � 1 is the dilute limit, in the sense that the charge density is
small compared to the temperature scale. Specifically

1
τeff.2πα′L2

J t

T 2/z
� 1 . (5.28)

In this limit it is immediate that the potential (5.26) becomes proportional to C2. The
conductivity σ(ω) is directly related to the reflection amplitude for scattering off the poten-
tial [48]. The correction to the constant result (5.27) will therefore be proportional to C2.
This simplifies the general scaling form of the conductivity when the charge density is small,

σ

(
ω

(J t)z/2
,
J t

T 2/z

)
∼ τeff.(2πα′)2 +

1
τ2

eff.(2πα
′)2L4

(J t)2

T 4/z
F
(ω
T

)
+ · · · . (5.29)

In this limit, DBI nonlinearities due to the charge density have been made small, the interac-
tions between charge carriers are negligible and one might have expected the conductivity to
be proportional to the density. However, in this case of massless charge carriers, the leading
correction to the constant conductivity is found to be quadratic in the density. The observ-
able we are computing here would be perhaps best characterized as a mobility rather than
a conductivity. The result (5.29) is consistent with the previous DC result (5.11). In (5.11)
the linear dependence on the charge density arises in the opposite limit to (5.28), in which
interactions between the charges are important. It is worth emphasizing again therefore
that the calculation of the conductivity which we are using does capture nonlinearities in
the charge density, and the linearity emerging in the DC limit at large density is nontrivial.

We now move away from the dilute limit and explore numerically the dependence of
the dissipative conductivity Reσ(ω) for different values of z. To proceed, we need to make
a choice for f(v). This will depend on the particular matter fields sourcing the Lifshitz
background. For generic examples, one can expect the asymptotic behavior f ∼ 1 − v2+z

near the boundary v → 0. This is because the normalisable mode of gtt is dual to the
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Figure 2. The real part of the conductivity as a function of frequency for z = 1 (left) and z = 2
(right). The four curves in each graph correspond to 1

τeff.2πα′L2
Jt

T 2/z equal to {0, 10, 20, 30} (left)
and {0, 2, 5, 10} (right), with J t = 0 giving the expected constant lines.

energy density T tt, which has scaling dimension [T tt] = z + 2. Indeed such asymptotic
behavior was found in the simple models of [49, 50], which used a massive vector field
coupled to gravity. Thus, for illustration we will take

f = 1−
(
v

v+

)2+z

. (5.30)

The temperature of these backgrounds is, from (3.4), T = (2 + z)/4πvz+. We will comment
below on the sensitivity of the results to this choice of f . The resulting conductivities are
shown in figure 2 below.

For all values of z, the conductivity exhibits a peak reminiscent of Drude theory at
ω = 0, approaches a nonzero constant value σ0 at ω →∞, and exhibits a dip in the middle.
Using the form for f in (5.30), it is easy to evaluate (5.11) in the large charge density limit
to obtain

σ(ω = 0)
τeff.(2πα′)2

=
1

τeff.2πα′L2

J t

T 2/z

(
2 + z

4π

)2/z

. (5.31)

The final z dependent term leads to the peak being bigger for a given J t/T 2/z at larger z, as
seen in the figure. All the conductivities exhibit a dip at intermediate frequencies. This can
be understood from a sum rule: one can straightforwardly show using the Kramers-Krönig
relations that

∫∞
0 dωReσ(ω) is independent of the dimensionless ratio J t/T 2/z. In using

the Kramers-Krönig relations it is important that the conductivity tends to its asymptotic
value σ0 sufficiently quickly in ω. For 1 < z < 2, Reσ(ω) approaches σ0 from above; that
is, it has a second peak (albeit much smaller than the Drude-like peak). For z > 2, Reσ(ω)
approaches σ0 from below.

Plotting the Schrödinger potential one can see that there is dip close to the horizon
where the potential becomes negative. The dip is not sufficiently big to allow negative
energy bound states (which would lead to an instability of the spacetime), but it does
allow for a low energy resonance. This is the ‘Drude peak’. This observation gives some
indication of how sensitive our numerical results are to the form of f chosen in (5.30).
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Experimentation shows that the overall shape of the conductivity plots is fairly robust if
we do not modify f drastically. That is, if we do not modify the minimal form of the
potential in which there is a dip at the horizon that is then connected smoothly onto the
asymptotic boundary behavior discussed above. However, if we introduce oscillations into
f in such a way that additional dips are introduced into the potential, then we can get
additional peaks in the conductivity. Typically one finds a second or more peaks at low
frequencies that are smaller than the peak at ω = 0. Curiously, such additional peaks also
arise if one takes (5.30) with z < 1.

In real-world strange metals, Reσ(ω) has a Drude-like peak at ω = 0, and approaches
zero at large ω more slowly than in Drude theory (see e.g. figure 14 of [47]). In our case,
as discussed above, the massiveness of charge carriers as compared to the temperature and
ω should lead to suppression of the C = 0 conductivity σ0. Before turning to the massive
case, we make one final observation.

Although we have set the momentum k to zero in our computations, in it straightfor-
ward in principle to work with a finite momentum. One interesting observation is that the
combination of momentum and energy appearing in the Schrödinger equation is

v2−2zfk2 − γ2ω2 . (5.32)

The feature of interest in this combination is that the coefficient of k2 goes to zero at
the horizon, while that of ω2 does not. This leads to the existence of low energy modes
with arbitrary momentum, manifested for instance in a nonzero spectral density at zero
temperature. This has something of the flavor of a Fermi surface; with a weakly coupled
Fermi surface there are zero energy modes with finite momentum connecting different
points on the Fermi surface. These exist for k < 2kF and lead to a sharp feature at
k = 2kF . While interesting properties of the finite k perturbation spectrum were found
in [18–20, 51], no such sharp feature was observed. This suggests that D-brane probe
theories in the relativistic regime γ � 1 do not describe weakly coupled fermions. It is
worth scrutinizing these systems more closely, taking into account effects that appear as
γ grows, cf (3.2) and (3.27). In addition to the back reaction on the metric, there are
important effects in the open string sector that arise as the electric field Ftr approaches the
critical value, γ →∞ [34, 35]. Fermi surfaces have been found directly in other holographic
systems in [7–11] (see [52] for an early approach to this problem).

6 Massive charge carriers

We will now study the effect of including a nonzero mass m for the charge carriers described
by the flavor brane, as in [17]. As discussed above, this is the case of interest in modeling
some features of real-world strange metals, whose energy gap is large compared to the
temperature:

Egap � T . (6.1)

For instance Egap might be at the lattice eV scale which is larger than the melting tem-
perature of the relevant materials.
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Figure 3. Schematic depiction of the massive flavor brane in the string regime (left) and spike
regime (right).

As discussed in previous works on flavor branes [53] and on finite-density hologra-
phy [54], a finite mass scale involves a configuration in which the volume of the internal cycle
the flavor brane wraps varies with radial position, shrinking toward the horizon. In the case
of massive flavors at T = µ = 0 [53], the volume shrinks smoothly to zero at a finite radial
position v = v0; the brane forms a cigar-like shape with its tip at v0. Charge carriers corre-
spond to strings stretching from the tip of the cigar down to the Poincaré horizon v =∞.
At finite temperature, a black hole horizon arises at a finite radial position v+. For large
enough mass (i.e. small enough v0), the flavor brane still shrinks to a point outside the black
hole horizon. Charge carriers in this 0 < T � Egap, µ = 0 theory correspond to strings
stretching from the flavor brane at v0 to the horizon at v+. To obtain finite density and
temperature, in a dilute limit one can simply introduce a small density of such strings and
ignore back reaction on the brane configuration. We will refer to this as the string regime.
For larger densities, the back reaction of the charge density on the brane is important; the
upshot of this will be that the brane forms a ‘spike’ or ‘tube’ stretching to the horizon from
v0 in place of the bundle of strings that pertained in the dilute limit [54]. While the spike
is string-like in some senses, it has a finite (order one in general) extent into the transverse
internal space. An artist’s rendering of these two possibilities is shown in figure 3.

In the following subsections, we will generalize these considerations to our Lifshitz
backgrounds and use the resulting brane and string configurations to compute the AC con-
ductivity for massive charge carriers. First we will consider the dilute limit in which the
strings do not back react on the shape of the flavor brane, and extend standard calculations
of drag forces [55, 56] to the Lifshitz case. This will lead to analytic results exhibiting a
tail in the AC conductivity going like σ(ω) ∼ ω−2/z over a range of frequencies for z ≥ 2,
giving nontrivial exponents for z 6= 2. Next we will analyze the problem for the case of
larger densities, exhibiting again the scaling σ(ω) ∼ ω−2/z as well as analytic and numerical
solutions to the equations for the brane embedding and Maxwell field fluctuations. This
latter regime includes nontrivial interactions among charge carriers. Finally, we will com-
ment on the potential for rolling scalar backgrounds to shift this exponent and to generalize
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our results for the Hall conductivity. These last comments will point the way towards a
model-building approach to holographic condensed matter physics.

We are working at fixed charge density, where the difference between the string and
spike regimes is a factor of L2/α′ in the charge density. In terms of the chemical potential
µ, in order for the density not to be exponentially suppressed by the Boltzmann factor
e−(E−µ)/T , one needs µ > Egap. The effect of Boltzmann suppression has been discussed
holographically in, for instance, [57, 58].

6.1 Drag calculation: conductivity in the dilute regime

In the extreme dilute limit, one can think of the carriers as individual strings stretching
between the flavor branes and the thermal horizon. There are no interactions between
the carriers in this limit. The flavor brane itself is given by the zero density solution, a
cigar-like shape with v = v0 at the tip. This framework has been extensively employed
for DC calculations in the relativistic case. e.g. [17, 20]. Here we apply it to DC and
AC conductivities, in our Lifshitz background. We will obtain our first instance of scaling
σ(ω) ∼ ω−2/z.

Expanded to quadratic order in transverse fluctuations and in the gauge t = τ, v = σ,
the Nambu-Goto string action becomes

SN-G. =
L2

2α′

∫
dt

∫ v+

v0

dv (fv−1−zxi′xi′ − f−1vz−3ẋiẋi) +
∫
dt ẋiAi(t, x)

∣∣∣∣
v=v0

. (6.2)

The surface term in the field equation is then

− L2

α′
fv−1−z∂vx

i + Fi0 + Fij ẋ
j = 0 at v0 . (6.3)

At zero frequency the field equation is easily integrated

xi = V i

(
t+

1
v2

+

∫ v u1+z

f(u)
du

)
, (6.4)

where V i is an integration constant and ingoing boundary conditions at the horizon have
been used to fix the relative normalization of the two terms. At the boundary, assuming
v0 � v+, we get

v−2
+

L2

α′
V i = Fi0 + FijV

j , (6.5)

which is Drude’s law with m/τ ∝ (L2/α′)T 2/z. The mass v−1
0 drops out as in ref. [17]. We

are evaluating the electric and magnetic fields at the tip of the cigar. In the zero frequency
case these are equal to their asymptotic values. The DC conductivity in the dilute limit of
these massive carriers is therefore

σ =
τJ t

m
∝ J t

T 2/z
. (6.6)

As we anticipated, the constant term in the massless result (5.11) is no longer present.
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Now consider the AC case. First we establish the range of scales of interest. The mass
of the charge-carrying fundamental string hanging down from v0 to the horizon is

Egap =
∫ v+

v0

dv
√
−gvvgtt/α′ =

L2

zα′vz0
. (6.7)

where we used the relation Egap = Mc2. Another natural scale is ω0 = v−z0 . This corre-
sponds to the energy scale of bulk excitations at the radius v0. Also, vz0 � T corresponds
to the flavor brane being outside the horizon. The existence of the two scales Egap and
ω0, differing by a power of the ’t Hooft coupling, is similar to the existence of distinct
hadronic scales for supergravity and string excitations in AdS/QCD. In the present case,
we are presumably interested in the lowest scales, below ω0, but it is interesting to look in
all ranges for interesting behaviors.

A related point, made in [58] in the AdS (z = 1) case, is that our drag calculation is
valid for densities small enough that the Nambu-Goto action is subdominant to the brane
action. The former scales like L2/α′ times the string density, while the latter scales like, for
instance τeff.L

4 ∼ NfNcL
4/α′2. So in terms of scalings with L2/α′, as long as the density

of strings is much less than of order L2/α′, their back reaction on the brane will be small.
The bulk equation of motion for x(v, t) = Re(Xω(v)e−iωt) is

∂v(fv−1−z∂vXω) = −ω2f−1vz−3Xω(v) . (6.8)

At zero magnetic field, with F01 = E, the boundary condition (6.5) implies that if we
evaluate the conductivity at v = v0 then

σ =
J tVω(v0)

E
=
iωJ tXω(v0)

E
=

iωJ tXω(v0)v1+z
0

(L2/α′)f∂vXω(v0)
. (6.9)

Consider first the very high frequency limit. For ω � ω0 we can use a WKB approxi-
mation in the whole range v0 ≤ v ≤ v+; the derivatives acting on the exponents dominate.
As noted above, this can be consistent with ω < Egap when L2/α′ is large. The leading
WKB solution to the bulk equation of motion is

Xω(v) ≈ C1e
−i

R v
v0
ωvz−1/f + C2e

i
R v
v0
ωvz−1/f

. (6.10)

The conductivity (6.9) in this regime is then

σWKB =
J tα′

L2T 2/z

(
v0

v+

)2

+O(1/ωvz0) =
J tα′

L2
v2

0 + . . . . (6.11)

This goes to zero as the gap is taken to infinity. Note that in this regime there will be
additional propagation effects in connecting the fields at v0 to the fields at the boundary,
which may give additional structure. In particular, at frequencies sufficiently higher than
the scale v0 one should expect to recover the massless dilute result σ0 of (5.27).

We can also treat the regime T � ω � ω0. For v � v+ we can approximate f = 1
and solve the equation of motion directly in terms of a Bessel function. For v � ω−1/z we
can again use WKB. These ranges of v overlap when T � ω. The Bessel solution is

Xω = vzζH
(1)
ζ (ωvz/z), ζ =

1
2

+
1
z
, v � v+ . (6.12)
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We do not need the explicit WKB result, but just the fact that WKB gives zero reflection,
so that the ingoing Bessel function (6.12) is still ingoing at the horizon v+. To evaluate
the conductivity in the range ω � Egap, expand the solution for small argument:

Xω ∝ 1− 1
Γ(−ζ)

(
ωvz

2z

)2

+ eiπζ
(
ωvz

2z

)2ζ

. (6.13)

So this is interesting: if z < 2 then ζ > 1 and the ω2 term dominates ∂vXω. The conduc-
tivity (6.9) is then

σ = 2zΓ(−ζ)
J tα′v2−z

0

L2

1
iω
. (6.14)

This is a nice Drude result, matching in magnitude the WKB result.
If z > 2 then ζ < 1 and the ω2ζ term in ∂vXω dominates. The conductivity acquires

a nontrivial scaling with frequency and is proportional to ω1−2ζ = ω−2/z,

σ = 4(2z)2/ze−iπ/z
J tα′

L2

1
ω2/z

. (6.15)

The crossover of scaling behavior at z = 2 originates as follows: the inertial mass
∫
dt ẋ2

has dimension z − 2, and so becomes irrelevant for z > 2. In this regime the inertia of
the probe is dominated by the bulk degrees of freedom it drags around. Note that the
conductivity here is independent of the scale v0.

The value z = 3 looks interesting; it gives a falloff in frequency like that seen in strange
metal data (e.g. [5]). However, this is not for the same z as gives the observed linear DC
resistivity in our simplest setup, since we found that ρ ∼ T 2/z, which would need z = 2.
Below, after generalizing our analysis to larger densities, we will outline a way to generalize
the model to obtain different exponents for these quantities.

In the above calculation we have not included the propagation of the source electric
field from the boundary through the brane to the cigar tip v0. This may be justified in the
very large mass limit corresponding to very small v0. In fact, the energy gap could be at or
beyond the lattice UV scale, in which case the string solution would be correct throughout
the regime in which the background Lifshitz geometry is applicable. In the next section,
we will analyze the full problem for large densities, for which the brane extends all the way
to the horizon.

6.2 Finite densities

Now let us analyze the conductivity for massive charge carriers in a regime where their
back reaction on the flavor brane cannot be neglected. We want to introduce an extra
scalar field into our DBI action that is dual to a relevant ‘mass’ operator in the boundary
field theory. This scalar field determines the volume of the internal cycle wrapped by the
brane, and will roughly dictate how far the brane sits from the horizon in the ‘Minkowski’
embedding (when J t = 0) [53].

The action for this scalar field is not universal, but depends on the internal space of
the geometry. The brane wraps an n-dimensional submanifold Σn of this internal space
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and, for simplicity, we will focus attention on the motion of the brane in a single direction,
parameterized by θ, orthogonal to Σn. We take the volume of the submanifold wrapped
by the brane to be V (θ)n. The effective DBI action reduced to 3 + 1 dimensions is then
given by,

S = −τeff

∫
dτd3σ V (θ)n

√
|?g + 2πα′ F | , (6.16)

where the pull-back metric on the brane, ?g, now includes kinetic terms for θ. In what
follows, we make the choice of normalization gθθ = L2. For much of the calculation below,
we leave V (θ) unspecified, but when required for definiteness we choose V (θ) = cos θ, as
befits a brane wrapped on a sphere Sn inside Sn+1 [53]. In general the range of θ will also
remain unspecified; for example, we could take more generally V (θ) = cos cθ for any c.

As in the massless analysis above, the equation of motion for Φ can easily be integrated
once to give

Φ′ =

√
−gtt(gvv + L2θ′ 2)C√

g2
xxV (θ)2n + (2πα′)2C2

. (6.17)

Here, as previously, C is a constant of integration. There is no such luxury for the back-
ground profile θ(v). To write the second order equation of motion, it is useful to first define
the ‘boost factor’

γ =

√
1 +

(
2πα′

L2

)2 C2v4

V (θ)2n
. (6.18)

This agrees with our previous definition (5.21) for the massless case when V (θ) = 1. To
avoid clutter, we will drop factors of

(
2πα′

L2

)
throughout the following calculation, restoring

them only in the final answer for the conductivity. The background profile of the brane
must satisfy,

∂

∂v

{
gxxgtt γ θ

′√
−gtt(gvv + L2θ′ 2)

}
+

1
V n(θ)

∂V n

∂θ

gxx
γ

√
−gtt

(gvv + L2θ′ 2)

[
(γ2 − 1)θ′ 2 − gvv

L2

]
= 0(6.19)

This equation looks somewhat formidable, but we can get insight from numerical solutions.
In order to perform numerics we need to make a choice for V (θ) and for f(v). As in
our numerical studies of the massless case in section 5.3, we will choose for simplicity
f = 1− (v/v+)2+z. We will furthermore take V (θ) = cos(θ) and n = 2, which corresponds
for instance to the brane wrapping a two dimensional sphere inside a three dimensional
sphere of unit radius.

Figure 4 shows the profile for the exponents z = 1 and z = 2, with m/T fixed at the
moderately large value of 20 and scanning over a range of charge densities. Here the mass
scale m of the charge carriers is determined by the coefficient of the non-normalisable mode
of θ near the boundary. We will define m more precisely very shortly. In all cases shown
in the figure, θ is approximately constant over a wide range v0 < v < v+,

θ(v) ≈ θ+ , (v > v0) . (6.20)
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Figure 4. The brane profile for z = 1 (left) and z = 2 (right) with 1
τeff.2πα′L2

Jt

T 2/z equal to
{10, 100, 1000, 10000} and {0.5, 10, 500, 10000} respectively. In all plots m

T = 20 and n = 2.

The constant regimes arise because γ is large in this range, allowing a solution with θ′ =
0. This behavior will allow us to obtain analytic results for the conductivity in the low
frequency range ωvz0 � 1. The constant solution and its large charge density regime of
applicability has been discussed previously in the z = 1 case (see e.g. equation (2.37)
of [54]).

At low densities, the top-most curves, the profile follows the zero density solution until
close to θ = π/2, where it rapidly transitions to a narrow spike. For the special case of
n = z + 1, which happens to apply to the left-hand graph, there is an analytic solution at
zero density, sin θ = v/v0. The value of v0 is fixed by the asymptotics as discussed below.
At large densities, the bottom-most curve, one observes that θ never becomes large. A
linearized solution is then available.

Of course, sufficiently close to the boundary we can always linearise (6.19) in θ; the
scalar field must go to zero near the (UV) boundary because it is dual to a relevant operator.
The potential must satisfy V ′(0) = 0 in order for there to be a solution. Since we are at
v � v+, we can set f = 1. The two solutions near the boundary are then

θ(v) =
∑
±
c±v

(z+2±α)/2 + · · · , (6.21)

where α =
√

(2 + z)2 + 4nV
′′(0)
V (0) . The coefficient c− of the non-normalisable mode is a

parameter in the field theory action, which sets the scale of the carrier mass. Specifically

m ≡ c2z/(z+2−α)
− , (6.22)

which follows from relating the coupling of the operator O to m by dimensional analysis.
Meanwhile the normalisable mode determines the expectation value: 〈O〉 ∼ c+. In order
for the operator O to be relevant, we need z + 2 > α, which requires V ′′(0) < 0.

As long as θ remains small we can extend the linearized solution to larger v. The
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solution to equation (6.19) linearised is9

θ(v) =
∑
±
c±v

(2+z±α)/2
2F1

(
2− z ± α

8
,
2 + z ± α

8
, 1± α

4
;−Y

)
, (6.23)

where Y = C2v4/V (0)2n. Using the hypergeometric transformation formulae, we can
express this in terms of functions of 1/Y . The condition that the growing mode at the
horizon, i.e. for Cv2 � 1, vanish then gives

c+ = −c−Cα/2V (0)−n/2I−α,z/Iα,z , (6.24)

where

Iα,z =
Γ(1 + α/4)Γ(z/4)

Γ([2 + z + α]/8)Γ([6 + z + α]/8)
. (6.25)

One then obtains the horizon value (for small temperatures)

θ+ = (I−α,−z − Iα,−zI−α,z/Iα,z)(m1/2zC−1/4V (0)n/4)z+2−α.

The linear approximation is self-consistent when this is small, Cz � m2 up to factors of
order 1. In this limit we can see that v0 ∼ C−1/2, rather than being tied to the mass scale m.

Before moving on to solve for the conductivity this background, we can briefly discuss
the thermodynamics of these solutions. The on-shell action is easily evaluated to give

TS

V2
= −τeffL

4

∫ v+

ε
dv
V (θ)n

v5+z

√
1 + v2fθ′2

v−4 + C2V (θ)−2n
. (6.26)

This formula generalises (3.13) to include a mass. (Just as in (3.13), we have dropped
powers of

(
2πα′

L2

)
; we have also set the magnetic field B to zero). The ‘spike’ or ‘tube’

region (6.20) then gives the contribution

TSspike

V2
= −τeffL

4V (θ+)n
∫ v+

v0

dv
1

v5+z

1√
v−4 + C2V (θ+)−2n

. (6.27)

This expression is the same as (3.13), but with the effective tension and the constant C
multiplied by powers of V (θ+). This contribution in fact contains almost all of the tem-
perature dependence of the free energy in the limit in which we are working, through the
endpoint v+. This then leads to the same thermodynamic temperature scalings we found in
section 3. There is additional temperature dependence through the µJ t term. In the large
charge density limit, where the linearised solution (6.23) is applicable, µ(T ) is given to lead-
ing order by the θ = 0 result, again recovering the previous massless temperature scalings.

9When z = 2 the form simplifies to θ(v) =
P
± d±v

2±α2
“

1 +
p

1 + C2v4V (0)−2n
”∓α4

.
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Figure 5. The dissipative conductivity for z = 1 (left) and z = 2 (right), with the same parameter
values as in figure 4

6.3 DC conductivity

The DC calculation presented in section 5.1 generalizes in a straightforward manner to the
massive case; equation (5.11) becomes,

σ(E, T ) =

√
(2πα′)4τ2

effV (θ?)2n +
(

2πα′

L2

)2
v4
?(J t)2 . (6.28)

Here V (θ?) is evaluated at v? defined in (5.8). When the mass of the charge carriers is
large in comparison to the charge density, V (θ(v?))→ 0 ensuring that the first term in the
conductivity, which is independent of J t, is suppressed as expected [17]. We can see an
instance of this in figure 4; in the upmost curve, the mass is larger than the charge density
and V (θ) ∼ 0 over a large range.

When the charge density is large compared to the mass, then V (θ(v?)) is finite and
order one, as we see in the lower curves of figure 4. The second term in the above equation
for σ still dominates because J t is large.

6.4 AC conductivity

The AC conductivity can be understood as a competition between the four dimensionful
quantities {T,m, J t, ω}. We are primarily interested in the low temperature regime, in
particular T � m, (J t)z/2, and are therefore well away from phase transitions of the sort
described in e.g. [54]. Furthermore, we are working at fixed charge rather than fixed
chemical potential. At fixed chemical potential, there can be a phase transition to a phase
with no charge density when µ . m, as described in e.g. [57]. In short we are mainly
interested in the effect of m versus J t at low T .

6.4.1 Numerical results

Figure 5 shows the conductivities for the same parameter values as for the profiles in
figure 4. One observes resonances at low charge density; these become discrete excitations
of the brane in the zero density limit. There is also an approach to a constant value
at high frequency; at frequencies much larger than the mass scale the massless result is
recovered. There are dips in between the peaks, as well as between the Drude peak and
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the asymptotically constant behavior, as required by the Kramers-Krönig relations (to see
that the sums rules hold for the large density cases with z = 2, one needs to integrate out
to much large frequencies than those shown in the above plot). We are most interested
in the behavior at frequencies below these natural scales of the system, where the drag
calculation gave a power law. Here too we can perceive such a power law in the numerics,
the decay in the left hand region of the plots, as we now proceed to derive analytically.

6.4.2 Maxwell fluctuations

Our goal now is to study the Maxwell fluctuations in the background solution θ(v). The
low frequency behavior arises from the regime v0 < v < v+ where θ is constant. We
expand the gauge field in fluctuations (5.19) and, for simplicity, consider zero momentum,
k = 0. In principle, we should also expand the scalar profile around the background θ(v)
but rotational invariance ensures that there are no mixing terms. The linearized equation
for the longitudinal fluctuation takes the form,

∂v

(
V (θ)nγ

√
−gtt

(gvv + L2θ′ 2)
A′x

)
= −V (θ)nγ

√
−(gvv + L2θ′ 2)

gtt
ω2Ax . (6.29)

We can again put this fluctuation equation into Schrödinger form (5.23), now with the
change of variables Ψ = (V (θ)nγ)1/2A⊥ and

d

ds
=

v1−zf√
1 + θ′ 2v2f

d

dv
. (6.30)

The potential in the Schrödinger equation (5.23) is given by

U =
1
2

1√
V (θ)nγ

d

ds

(
1√

V (θ)nγ
d (V (θ)nγ)

ds

)
. (6.31)

We now solve the Maxwell equations in various regimes that will overlap at large
ω. Firstly, away from the asymptotic boundary (v = 0), the Schrödinger potential U is
bounded, and in this regime we can solve the Schrödinger equation for Ax with ω2 � U .
The answer is

Ax(v) ∝ eiωs(v)

V (θ)n/2γ1/2
, (6.32)

where

s(v) =
∫ v

0

uz−1

f

√
1 + θ′2u2fdu . (6.33)

There is no assumption about large C here. We have imposed ingoing boundary conditions
at the horizon, which fixes the sign of the exponent. This solution is to be matched onto
a solution that extends closer to the boundary.
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Secondly, consider the large C limit and use the constant solution (6.20) for v > v0.
The Schrödinger equation for Ax can be solved for v0 < v � v+, where f = 1. The general
solution is

Ax(v) = a1v
z
2
−1J 1

2
− 1
z

(
ωvz

z

)
+ a2v

z
2
−1J− 1

2
+ 1
z

(
ωvz

z

)
. (6.34)

When z = 2 these solutions are degenerate and the second Jν function is replaced by a Kν

function. At ωvz � 1 this solution can be matched onto the ‘WKB’ solution (6.32) which
then picks out the mode that is ingoing into the horizon (the existence of an overlap region
requires ω � T ). Thus we must have

Ax(v) ∝ v
z
2
−1H

(1)
1
2
− 1
z

(
ωvz

z

)
. (6.35)

If we furthermore assume that ωvz0 � 1 then close to v = v0 we can take the limit ωvz � 1
of the Hankel function to obtain

Ax(v) = Ax(v) = 1−
π
(
tan π

z − i
)

Γ
(

1
2 −

1
z

)
Γ
(

3
2 −

1
z

) (ωvz
2z

)1− 2
z

+ · · · . (6.36)

In the case z = 2 logarithms appear. The expansions thus require T � ω � v−z0 , which
is consistent with our previous assumption v+ � v0. Equation (6.36) is similar, but
not identical, to an expansion appearing in the string computation (6.13). The dictionary
between the two can be determined by comparing the sources for the bulk field Bvx, yielding
ẋ = v3−zFvx which is found to map the Hankel functions onto each other. Further, the
implication for a ‘local conductivity’ evaluated at v = v0 will now be seen to be the same
in the two pictures. The (a priori nontrivial) agreement between the two different regimes
is due to the spike behavior emerging in the large density limit. As we saw previously
for thermodynamics in (6.27), the emergent tube behaves effectively like a string with a
different tension. The local conductivity will be

σ(ω, v0) =
−iJx(v0)
ωAx(v0)

∝ τeff.Cv
3−z∂vAx(v0)
ωAx(v0)

, (6.37)

where we used the usual definition

Jx(v0) = ΠAx(v0) =
∂L

∂A′x(v0)
, (6.38)

evaluated on the constant θ background solution. The expansion (6.36) then gives

σ(ω, v0) ∝


τeff.Cv

2−z
0 ω−1 if z < 2

τeff.C (ω logωv2
0)−1 if z = 2

τeff.C ω
− 2
z if z > 2

. (6.39)

Together with the extensions considered immediately below, these scaling laws are our
main result for the conductivity at finite density.
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Thirdly, we need to move into the region v < v0. We could avoid this step if we set
v0 to be below our UV cutoff radius ε. This would not necessarily be unreasonable, as we
might expect the mass scale to be of the order the lattice scale. In this case (6.39) would
be the final result. However, we will proceed without this assumption and consider the
conductivity as v → 0. Before presenting a computation, we will first give an argument
that anticipates the result. In essence, we will see that since we are working in a regime
ωvz0 � 1, the frequency dependence just found in (6.39) will persist after continuing our
solution to the boundary.

Consider the local conductivity as a function of v: σ(ω,C, v0; v). We are in the regime
where f ∼ 1, because v < v0 � v+, so v+ drops out and we have included all the remaining
parameters on which the conductivity could depend. Writing the local conductivity in
terms of its value at the boundary, we have without loss of generality

σ(ω,C, v0; v) = σ(ω,C, v0; 0)f̃(ωvz, Cv2, v/v0) , (6.40)

where the function f̃ approaches 1 at the boundary, v → 0.
Let us expand f̃ in powers of ω, which means powers of ωvz, ωvz0 , and ωC−z/2. These

are all small: everywhere in the range of 0 ≤ v ≤ v0 we have that ωvz � 1, which, combined
with the additional assumption that Cv2

0 & 1 means that also ωC−z/2 � 1. There cannot
be any inverse powers of these quantities since that would ruin the boundary behavior
f̃ → 1. We do have the constant ω0 term because we know f̃ → 1 at the boundary.

So in the limits of parameter space in which we are working, i.e. the physically relevant
regime T � ω � v−z0 . Cz/2, the ω-dependence of f̃ will be trivial. This means that the ω-
dependences found above in (6.39) will persist upon continuing the calculation from v = v0

out to the boundary v = 0. The dependence on Cv2 and v/v0 need not be trivial, and we
expect a reshuffling of the dimensionful prefactors in (6.39).

We will now confirm this argument with an explicit calculation. For the linearised
(large charge density) solution, where θ remains small, we may set θ = 0 in the Maxwell
equation. Furthermore, at the low frequencies of interest ω2v2z . ω2v2z

0 � 1, the solution
to (6.29) is

Ax(v) = p1 + p2 (
√
Cv)z 2F1

(
1
2
,
z

4
, 1 +

z

4
,−C2v4

)
. (6.41)

The conductivity, evaluated on the boundary, is given by σ(ω) ∝ τeff.C
z/2ω−1p2/p1. Ex-

panding the solution (6.41) for Cv2 � 1, i.e. into the constant regime, one obtains

Ax(v) = p1 + p2
Γ
(

1
2 −

z
4

)
Γ
(
1 + z

4

)
√
π

+ p2
z

z − 2

(√
Cv
)z−2

+ · · · . (6.42)

which can be matched to (6.36). Restoring factors of 2πα′ and L2, the conductivity is,

σ(ω)
τeff.(2πα′)2

∝


(

2πα′

L2

)z/2
Cz/2 ω−1 if z < 2(

2πα′

L2

)
C (ω logωv2

0)−1 if z = 2(
2πα′

L2

)
C ω−

2
z if z > 2

. (6.43)
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This is now an exact result for the conductivity evaluated at the boundary, including

factors of C and v0. This result has required T � ω � v−z0 .
(

2πα′

L2

)z/2
Cz/2. Roughly

this corresponds to a low temperature regime where the frequency is lower than the energy
gap and charge density scales. These are both of order eV in the cuprates, and so this
regime may be roughly compatible with the experimentally measured anomalous scalings
(e.g. [5]), depending on the precise numerical relation of C and v0 to the charge density
and energy gap scales.

6.5 Model building

So far we have found two strange metal-like behaviors involving nontrivial exponents,

ρ ∼ T ν1 and σ(ω) ∼ ω−ν2 , (6.44)

with

ν1 = 2/z, ν2 = 2/z (z ≥ 2) , (6.45)

in pure Lifshitz backgrounds. In real-world strange metals, such as the cuprates, ν1 ≈ 1
and (according to some analyses, e.g. [5]) ν2 ≈ .65. These values would correspond in our
formulae to z = 2 and z = 3, respectively. It would be interesting to find a generalization
of our computations which produces different exponents for these two quantities. In this
subsection we will outline a mechanism for accomplishing this, though it is fair to say that
our simplest examples give the scaling (6.45).

Our strategy is to consider pseudo-Lifshitz solutions, in which the metric is Lifshitz but
there are scalar fields that run in the solution. One example of this setup was described
in [59, 60], and others with interesting properties are under investigation [61, 62]. The
tension τeff of the flavor brane generally depends on scalar fields such as the string coupling
and internal volumes in the four-dimensional Lifshitz background; in essence it is itself a
scalar field. In one of our regimes of interest, this brane forms a string-like spike realizing
a finite density of charge carriers.

Let us consider the case where the tension of this spike varies with radial position v

such that

τ ∼ vκ . (6.46)

There are various potential examples of this. One could consider, for example, a situation
where the string coupling runs in the solution. Then, if the flavor strings involved were D-
strings, this would affect the dilute drag calculation of section 5.4.1 by making the tension
1/gsα′ run with scale, as we now show.

We can compute the AC conductivity in the situation just outlined. We will use
the dilute limit drag approach of section 5.4.1 for simplicity, bearing in mind our previous
observation that the same scalings go through in the large density limit due to the formation
of a spike. The bulk equation of motion (6.8) on the bundle of strings becomes

∂v(fv−1−z+κ∂vXω) = −ω2f−1vz−3+κXω(v) . (6.47)
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For f ≈ 1, this has Bessel function solutions like those in (6.12), but now with index

ζκ =
1
2

+
1
z
− κ

2z
. (6.48)

This leads to a nontrivial falloff, for z ≥ 2− κ,

σ ∼ ω(κ−2)/z , (6.49)

i.e. the exponent is now ν2 = (2− κ)/z.
The next question is what happens to the DC calculation. The DC calculation in

section 5.4.1 depends on f(v), which in turn depends on the black hole solutions with
scalar hair. As in section 5.4.1 we impose ingoing boundary conditions at the horizon,
which means that

∂vX|v→v+ ∼
V

(v − v+)T
, (6.50)

in terms of the velocity V , with the temperature T ∼ f ′(v+)/vz−1
+ .

The DC (ω = 0) equation of motion implies

fv−1−z+κ∂vXω = Ṽ , (6.51)

for a constant Ṽ . The conductivity is therefore

σDC ∼
J tV

E
∼ J t α

′

L2

V

Ṽ
∼ J tv2−κ

+ , (6.52)

where we imposed the ingoing boundary condition (6.50) to obtain V
Ṽ

= v2−κ
+ . The question

of whether the exponent in the DC resistivity is modified therefore boils down to the
question of how T ∼ f ′(v+)/vz−1

+ scales with v+ in this system with running scalars. It
would be interesting to pursue this in detail in future work. If one still has f = 1− vn/vn+,
then we get the same answer as before, T ∼ 1/vz+, and then we have ρ ∼ T (2−κ)/z, i.e.
ν2 = (2−κ)/z. This would not decouple the two behaviors (DC and AC conductivity), but
does generalize our mechanism from pure Lifshitz, allowing for linear resistivity for different
z 6= 2 if the scalar determining the tensions runs with nontrivial κ as in (6.46) above.

However, now we may use the fact that the DC calculation at ω = 0 and the AC one
in the regime ω � T involve different ranges of scales. In a general solution, κ may itself
depend on radial position. For example, κ may jump across a domain wall in the bulk.
So it may be possible to shift the exponent ν2 relative to ν1 in order to mimic the strange
metallic behaviors. Strange metal phenomenology requires the nontrivial exponent ν1 6= 2
at ω = 0, for T ranging up to the melting temperature. At a given temperature T , the
phenomenology requires ν2 6= 1 over a range of frequency ω greater than T . In order to
accomplish this using the strategy just outlined, the domain wall would need to remain
outside the black hole horizon.

Similarly, let us briefly consider model-building possibilities for addressing the Hall
conductivity and generalizing it from the Drude-like result we obtained above in our sim-
plest model. If we could insert a different power of v in front of the F 2 terms in the action
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it would change the scaling of the hall ratio (5.17), for the following reason. The Hall
ratio (5.17) for J t � B, the case which is Drude-like, depends on B while the DC conduc-
tivity T (2−κ)/z/J t does not depend on E or B. However, such an extra power would also
change the scaling of the J t terms in various quantities, and a full computation is needed
to see if there is a net effect.

One way such a modification might arise is if we had some source of stress energy which
generates an appropriate conformal factor in front of the Lifshitz metric, which would be a
distinct effect from the v-dependent tension leading to the shift by κ. Another possibility
is to consider a bulk theta angle, θ

∫
F ∧ F , which would shift J t by Bθ, also affecting the

Hall result.
Although these generalizations of our basic structure are somewhat complicated, it

seems very interesting to investigate what set of bulk ingredients produce the suite of
anomalous strange-metallic behaviors. We leave detailed model building to future work,
and next turn to microscopic constructions of holographic Lifshitz backgrounds.

7 Lifshitz from string theory

In this section, we address an open problem in the literature on holographic duals with
Lifshitz symmetry, outlining three string theoretic constructions of such solutions.

S =
∫
d4x
√
−gM2

P (R− 2Λ)− 1
2

∫
(F2 ∧ ∗F2 +H3 ∧ ∗H3)− c

∫
B2 ∧ F2 (7.1)

generates, for a special value of Λ, a Lifshitz solution with metric (3.1) (let us change the
radial coordinate to r = 1/v to match the form of the metric given in [21]). The form fields
in the solution are

F2 =

√
2z(z − 1)
L

θt ∧ θr, H3 =
2
L

√
z − 1 θx ∧ θy ∧ θr , (7.2)

in terms of the orthonormal basis of forms

θt = Lrzdt, θx = Lrdx, θy = Lrdy, θr = L
dr

r
. (7.3)

The condition on Λ that is required for this solution is that c and Λ be related according to

c2 =
2z
L2

, Λ = −z
2 + z + 4

2L2
. (7.4)

Turning this around, this means that in the Landscape of string vacua, the possible val-
ues of the dynamical critical exponent z will be determined by the discretuum of possible
values of the cosmological constant and ‘mass’ c.

7.1 Lifshitz solutions from Landscape dual pairs

As reviewed above and in [63], in order to obtain the Lifshitz geometries as derived in [21]
from string theory, one requires not just the matter content (7.1) of [21] but also the
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relationship (7.4) between the Chern-Simons coefficient c and the cosmological constant Λ
in the four-dimensional effective theory. Another requirement is that the fluxes producing
the Lifshitz geometry not destabilize the moduli. It is interesting to ask whether this is
possible to obtain in the Landscape, where Λ is often tunable, and if so what is the content
of the dual field theory which generates this Lifshitz scale invariance. We will now outline
such solutions in a corner of the landscape developed recently where the dual field theory
is also known implicitly via the low energy limit of a specific brane construction.10

In string theory, the cosmological term Λ in (7.1) is a potential for dynamical scalar
field moduli of the compactification of extra dimensions. The fluxes F2 and H3 in the
above construction may come from a variety of fluxes in the underlying higher-dimensional
theory. Let us study the compactifications [65] of F theory on an elliptic fibration over
a six-manifold of the form Y 5 × S1, where the 5-manifold Y 5 is a Hopf fibration over a
four-dimensional base B. This model has a moduli potential of the form (with radii given
in string units and gs ∼ 111)

U ∼M4
P (RfR6R

4)−1

(
R2
f

R4
− ε

R2
+

N2
c

R8R2
f

+
Q2

1

R2
6

+
Q2

3

R4R2
6

+
Q̃2

3

R4R2
f

)
(7.5)

where R
√
α′ is the size of B, Rf

√
α′ the size of the Hopf fiber, and R6

√
α′ the size of the

S1 factor in the geometry. The term proportional to ε arises from the curvature of the
compactification, including the effects of the 7-branes which partially cancel the positive
curvature of the Y 5 component. Here Nc is the number of units of 5-form flux along Y 5

and Q1 is the 1-form flux quantum number along the S1 factor. We have also included RR
3-form flux quantum numbers Q3 and Q̃3 threaded through 3-cycles in Y 5×S1, applicable
in the generic case that Y 5 contains 2-cycles and dual 3-cycles. Extremizing the potential
with respect to R, Rf , and R6, we get a solution with

R2
f ∼ εR2, R4 ∼ Nc

ε
, R2

AdS ∼
R2

ε
∼ R2

6

Q2
1

. (7.6)

In deriving this we assume that Q3, Q̃3 are small enough to make these terms subdominant,
but if we turn off the 1-form flux, similar scalings result but with Q1 replaced here by
Q3/R

2, Q̃3/R
2.

To begin let us identify p-form potential fields that descend to the 1-form and 2-form
potentials A1 and B2 prescribed in [21]. We cannot immediately take the flux B2 in (7.1) to
be simply the Neveu-Schwarz 2-form field of type IIB string theory in general in F theory,
since the type IIB 2-form fields generically undergo monodromy about the 7-branes in these
backgrounds. It is possible, however, to impose that the SL(2,Z) monodromy matrix fix
one eigenvector in the space of 2-form potential fields BNSNS

2 , CRR2 ; this is not compatible

10See [59, 60] for recent constructions of Lifshitz-like theories with radially rolling scalars, and [64] for

other constructions of Lifshitz geometries that may be related to Chern-Simons theories.
11The string coupling is order one on the mutually nonlocal sets of 7-branes in the simplest construc-

tions [65]. The dilaton per se is typically heavy in F theory compactifications, and the moduli of the

7-branes are flat to very good approximation, leading at worst to allowed tachyons.
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with fixing the axio-dilaton at a constant value, and in particular is away from the Sen
limit of weakly coupled orientifolds.

It is perhaps simpler to work with the S-duality invariant potential field C4. Let
us consider obtaining the Chern-Simons term in (7.1) for example from the worldvolume
coupling ∫

f2 ∧ C4 (7.7)

arising on D5-branes. We can consider a D5-brane wrapped on a 2-cycle in Y , at a point
in the S1, with its charge cancelled by flux, by an O5-plane, or by an anti-D5-brane at
the diametrically opposite point on the circle (though the latter is likely to suffer from a
disallowed tachyon). Equivalently, we may dissolve 5-branes into 7-branes and consider 7-
branes which wrap the S2×S1 times a contractible circle in the dual S3, with worldvolume
flux through the S2 and use the

∫
f ∧f ∧C4 coupling. In order to match to the parameters

of the effective theory, we must normalize the fields accordingly. To start, define

F̂2 ≡ f2, B̂2 ≡
∫
S2

C4 (7.8)

Rescaling the fields so as to normalize them as in (7.1) reveals that

c ∼ V
1/2

2

V 1/2
√
α′

(7.9)

where V2 ∼ R2 is the volume of the wrapped S2 in string units. Putting this together with
the structure of the moduli potential, we obtain

4z
z2 + z + 4

≡ c2

Λ
∼ V2R

2

V ε
∼ 1
Q1(Ncε)1/2

(7.10)

where in the last step we plugged this into the stabilized solution (7.6). Again it is inter-
esting to note that the available values of the dynamical critical exponent z are determined
by the available values of the cosmological constant in the string landscape.

Alternatively, one can consider the Chern-Simons coupling
∫
f ∧ C6 on the 7-branes

already present in the model, as long as there is a monodromy-invariant combination of C6

and its S-duality partner in the 7-brane background. There are also bulk (closed string)
Chern-Simons couplings that may be used depending on the compatibility of their form
fields with the 7-branes in the model.

Finally, we must ensure that the added fluxes do not destabilize the moduli. Note that
the rescaling we did to normalize the fields as in (7.1) puts all the moduli-dependence of the
new degrees of freedom into the Chern-Simons term, which depends on one combination of
moduli (7.9); let us denote this combination eσc/MP in terms of a canonically normalized
scalar field σ. For z of order 1, this Chern-Simons term is of the same order as the leading
terms in the moduli potential, and for larger z it becomes less important. Canceling the
variation of the action with respect to σc, in the presence of this term, therefore shifts σ
by at most an amount of order MP . Since the radii are large to begin with, this leaves
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us near the original solution. Furthermore, the Chern-Simons term does not contribute to
the variation of the action with respect to the four-dimensional metric, so the effective four
dimensional cosmological term is also close to its original value, still negative.

7.2 Landscape of holographic Lifshitz superconductors

Having now constructed Lifshitz solutions from the top down, we can consider systems
with superconducting instabilities and study how their parameters vary as we scan over
a corner of the landscape (c.f. [66]). In particular, it is interesting to ask whether the
non-Fermi liquid behaviors like (2.7) that we find are correlated with higher temperature
holographic superconductivity, analogously to what happens for some real world materials
(although strange metallic behavior is also observed in non-high Tc materials such as heavy
fermions), or if instead these features are independently variable. This type of question —
one which has been much discussed in the context of cosmology and particle physics — is
notoriously difficult to answer reliably. Here we will restrict ourselves to a few comments
in the context of the constructions given above.

As reviewed for example in [13], holographic superconductors arise when the normal-
izable mode of a bulk charged scalar field condenses. Solutions of this type in Lifshitz
geometries have been described recently in [67, 68]. We will not make a detailed study of
such theories here but rather discuss general features of the superconducting instability.

A charged scalar field has a (radially dependent) contribution to its mass squared of
order gttΦ(v)2 (where recall Φ = At in our notation). Now in our probe brane solution (3.9),
gttΦ(v)2 grows toward the IR region of the geometry (toward larger v). Roughly speaking,
an instability toward condensation of the scalar field sets in at the radial position for which
the total mass squared of the charged scalar goes more negative than the Breitenlohner-
Freedman (BF) bound [66, 69, 70]. The critical temperature Tc is determined by this scale,
since the temperature of the black hole needed to barely screen this instability depends on
its radial position. This argument is incomplete as it is not the asymptotic BF bound that
is relevant in general. For instance at low temperatures it is a near horizon BF bound that
controls the instability.

One could ask the question of whether Tc increases as we increase z, deviating further
and further from Fermi liquid theory (2.7). The question is not precise until we decide
what to hold fixed in making this comparison. In the construction of section 7.1, charged
scalar fields with bare mass m = 0 arise naturally from intersections of flavor branes.
Therefore these constructions come with the potential to become superconducting. In [21]
the analogue of the BF bound for Lifshitz geometries was derived:

m2L2 > −4 ⇒ m2 > −8|Λ|/(z2 + z + 4) . (7.11)

As discussed above, we can vary z by varying the ratio (7.4). If we hold M2
P /|Λ| fixed as we

increase z then it is clear from (7.11) that the scalar massless comes closer to an instability
in the absence of an electric field background. This may translate into a higher Tc, although
the profile Φ(v) itself depends on z so one should perform a complete calculation to be sure.
However, it is not clear that this is physically the correct ratio to fix. More abstractly we
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have enough parameters in the construction to increase z while keeping fixed |Λ|/(z2+z+4)
and hence Tc. So even in the restricted corner of the landscape we have studied so far,
varying over different theories (analogous to varying over materials in the real world) can
independently change z and Tc. It would be very interesting to delve deeper into this
question to see if useful correlations arise among appropriately defined quantities in the
landscape of holographic non-Fermi liquids. We leave that for future work.

7.3 Lifshitz from brane polarization

In eq. (3.27) we have seen that the backreaction of the brane fields on the metric becomes
strong in the IR. We have not yet solved the backreaction problem in general, but in
studying it have found an unexpected and novel realization of a Lifshitz solution, which
we describe here.

One mechanism by which singularities are resolved in string theory is brane polar-
ization [71, 72], where a brane wrapped on the would be singularity expands to a finite
radius due to the potential from form fields, and screens the diverging fields. For hadronic
systems at finite density, it has been noted that baryons can polarize in this way [73–75].
That work was in the probe approximation for 3+1 QCD; here we would like to take into
account backreaction in a conformal background.

For a single static baryon the action is

S =
∫
dt (−M

√
−gtt +At) , (7.12)

where we have reduced on the dimensions in which the baryon is wrapped. We couple a
continuous distribution12 ρ(v) ≥ 0 of baryons to Einstein-U(1) theory,

S =
∫
d4x

[√
−g
(

1
2κ2

[
R+

6
L2

]
−F(|F |2)

)
+ ρ

(
−M
√
−gtt +At

)]
, (7.13)

with F = dA. We have taken a general function of |F |2 = FµνF
µν/2; for field strengths in

the vt plane this allows us to treat DBI and Maxwell together, as well as generalizations.
We have omitted many fields that could appear in a realistic string background, such as the
dilaton and the compactification radius. In a more top-down treatment we must include
these; we will address this after first analyzing the simpler effective theory (7.13).13

We are interested in solutions with metrics of the form

ds2 = L2

(
−e2γt(v)dt2 + e2γx(v)(dx2 + dy2) +

dv2

v2

)
, (7.14)

and gauge potential At(v).

12The baryons are discrete, but we have found in brane models that their density per curvature volume

is large, and so their backreaction will be smooth.
13In fact, this truncated action has a nonsingular solution even without brane polarization, as we will

discuss in a later subsection, though as we will also discuss this solution is subject to an instability in the

presence of a bulk fermi sea.
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Whenever a solution to the equations of motion can be found that is compatible with
the constraint ρ ≥ 0, then we can eliminate ρ from the action. The ρ equation of motion
implies that

At = MLeγt(v) or ρ(v) = 0 , (7.15)

representing either an extremum or an endpoint of the action. In the former case, the
resulting action for γt,x is

S =
L2

κ2

∫
dv

v
eγt+2γx

{
3− (κ2L2)F(−M2v2γ′2t /L

2) + 2v2γ′tγ
′
x + v2γ′2x

}
. (7.16)

Also, the At equation gives

ρ = 2ML∂v(e2γxF ′vγ′t) . (7.17)

In a scaling solution, vγ′t = f and vγ′x = k are constants. In this case the equations of
motion reduce to

0 = 3− (κ2L2)F(−M2f2/L2)− f2 − fk − k2 , (7.18)

0 = −f2 − fk + 2k2 + (2κ2M2)(f2 + 2fk)F ′(−M2f2/L2) . (7.19)

Let us specialize to the Maxwell action

F(x) =
x

2g2
=
|F |2

2g2
(7.20)

Then

0 = 3 + (µ2 − 1)f2 − fk − k2 , (7.21)

0 = −f2 − fk + 2k2 + 2µ2(f2 + 2fk) , (7.22)

where µ2 = M2κ2/2g2. The dynamical critical exponent is given by the ratio z = f/k.
The two possible values are readily obtained from eq. (7.22),

z = −2 ,
1

1− 2µ2
(7.23)

Note that

ρ =
2fkLM
g2v

e2γx (7.24)

is positive only when f and k have the same sign, so we must take the second solution, and
only for 1 > 2µ2; also, f and k as given by eq. (7.21) are then real. Similar results hold for
the DBI and other actions.

The density (7.24) is constant per unit three-volume in the bulk, and so its integral
diverges toward the boundary. At finite baryon density, the charge density must be zero
for v less than some minimum value, and the full solution is AdS4 near the boundary, with
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a transition region around the discontinuity in the density, and approaching to the Lifshitz
solution in the IR.

This suggests an interesting element of the holographic dictionary. Discrete remnants
of translation symmetry is a familiar possibility in real space. Holography maps the radial
direction into scale. Putting these together, a discrete remnant of scale symmetry may
occur naturally in field theories with holographic duals.

To apply this mechanism to our construction, we have two cases: the U(1) is elec-
tromagnetism, or it is a new gauge symmetry on another brane. In the latter case, this
can provide the Lifshitz bulk that we need in our construction. The other case, where the
electromagnetic U(1) is inducing the polarization, is interesting and brings up the question
of the microscopic origin of our model. Generally, there are color branes with strongly
coupled gauge fields, and flavor branes, with charged fields living on the intersection. The
electron itself must be neutral under the emergent color group, and so is identified with the
lightest color singlet electromagnetically charged state. In many models, depending on the
brane configuration, this will be the baryon. Thus one can think of the electron in these
models as separating into N spinons (in some others it will be a scalar-fermion bilinear).
In the phase we are discussing here, these would be confined into localized electrons, so
this would likely be a normal rather than a strange state.

7.3.1 Baryon-induced Lifshitz: top down considerations

In the above discussion, there were two string-theoretic issues left unresolved: the moduli-
dependence in the effective action (7.13) and the possible values of z (equivalently µ2)
in (7.23). Let us analyze these next using more details of the internal structure of string and
M theory compactifications. We will start by determining z in a class of string constructions
assuming the moduli are still stabilized in the presence of the new sources generating
Lifshitz. Then we will explain how the stabilization of the moduli is affected by the new
sources, finding that they remain stabilized for a range of z which includes the value (z = 2)
that we obtain in our simplest models.

Let us take the Maxwell case for simplicity. The baryon is a p-dimensional-brane
wrapped on a p-cycle Σp of volume Vp in Planck or string units (for example one could
consider the M theory case, with eleven-dimensional Planck length `P ). The U(1) is A ≡
A(1) =

∫
Σp
A(p+1) in terms of the p + 1-form potential A(p+1) sourced by the p-brane.

Because we will be interested in computing z, let us normalize these elements explicitly:

A(p+1) ≡ A(1) ∧ ω(p), µp

∫
Σp

ω(p) ≡ 1 (7.25)

This way we reproduce the coupling
∫
d4xρAt in the effective theory (7.13). In M theory

we have M2-branes (p = 2) and M5-branes (p = 5), with µp = (2π)−p`−(p+1)
P .

As discussed above,

z =
1

1− 2µ2
, µ2 =

M2κ2

2g2
. (7.26)

Here

M = Vp`
p
P τp (7.27)
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in terms of the p-brane tension τp = µp. Also

κ2 =
(2π)8`2P

2V
, (7.28)

and from the dimensional reduction of the kinetic term for A(p+1) we have

1
2g2

=
1

p!(2π)8`9P

∫
d7x
√
G7 ω(p)i1...ip ω

i1...ip
(p) . (7.29)

where
√
G7 is the square root of the determinant of the metric of the internal seven dimen-

sions. Note that for a simple product geometry, or anything close to it such as a fibration,
this quantity will scale like V/V 2

p , leaving no dependence of z (7.26) on V and Vp.
In general, in order to evaluate µ2 (7.26), we need information about the geometry to

compute (7.29). However, a very simple case to consider to begin with is that of D0-branes
sitting at a point in the compactification on a six-manifold X6. Coming back to string
theory then, we have for the D0-brane mass

M =
1

gs
√
α′

(7.30)

The form ω(p) (7.25) becomes simply ω(0) =
√
α′.

The D0-brane sources the 1-form gauge field A(1) in type IIA string theory, with kinetic
term |F |2V ol(X6)α′/4κ2

10. Plugging into (7.26), using that κ2 = κ2
10g

2
s/V ol(X6), we obtain

µ2 =
1
4
⇒ z = 2 (7.31)

It is interesting that this calculation lands us on the simple value of z which also leads to
linear resistivity in our simplest setup. (In order to connect to that discussion, we need to
include flavor branes in the compactification on X6). One obtains the same result z = 2 for
a Dp-brane wrapped on one factor of a product manifold. On more complicated manifolds
there are effects that go in both directions. If there are components of ω(p) not tangent
to the wrapped brane, as in nontrivial fibrations, they increase the kinetic term (7.29)
and therefore also µ2 and z; if µ2 ≥ 1/2 then the branes do not polarize at all. On the
other hand, if the brane wraps in a region with warping, its tension, as well as µ2 and z,
are reduced.

Specific examples of IIA compactifications with known field theory duals which we can
use for this purpose include the near horizon limit of D2-branes and flavor D6-branes (equiv-
alently a certain orbifold of M theory on S7) and the IIA limit of the ABJM theory [76]
(another orbifold of M theory on S7). Another class of models arises at large radius from
type IIA on S6 with 6-form flux and flavor D4-branes. Altogether, this simple construction
provides concrete, though ultimately discrete, Lifshitz geometries from string theory.

More generally, we could consider baryons in M theory on a spectrum of different
manifolds such as Q(1, 1, 1) and Yp,k [77]. See [78] for a recent discussion of baryons from
wrapped 5-branes in Q(1, 1, 1); these do not condense in their simplest setup as can be seen
from similar reasoning to that given above. It will be interesting to analyze the spectrum
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of available values of z from brane-polarization induced Lifshitz in the Landscape (Freund-
Rubin and beyond). Of course, these are at best toy models for several reasons; for example,
the supersymmetry preserved by some of the underlying theories [76, 77, 79–81] renders
them distant from direct condensed-matter applications.

Let us next address the question of whether the moduli are destabilized by the polarized
branes and the field strength Fvt turned on in our background. Let us begin with a
stabilized AdS4 solution in the absence of these additional ingredients, and analyze their
effects on the moduli, in a metric that takes a product form as just discussed. After
substituting the solution to the ρ equation of motion, we have a term in the Lagrangian
proportional to

−
√
−g 1

g2
F 2 ∼

√
−gM

2f2

g2L2
∼
√
−g

τ2
pV f

2

L2
(7.32)

In the last step we used (7.27) and that in the product-like form of the metric, 1
g2
∼ V

V 2
p

(the inverse powers of Vp coming from the fact that A descends from the higher-rank
p-form potential A(p)). This term scales like the 4-dimensional curvature term. Let us
focus on the type IIA examples mentioned above. If we Weyl rescale, sending gµν →
gµνg

2
s/V ol(X6) to go to four-dimensional Einstein frame, we remove the moduli dependence

from the Einstein term in the standard way. In so doing, we also almost remove the moduli
dependence from the extra term (7.32), since it scales the same way in terms of powers of
gµν . Remembering that f = dγt/d log v and that gtt ∼ e2γt , and integrating by parts once,
one finds a residual dependence on one combination of the moduli which is proportional to
µ2f(f + 2k) log(V ol(X6)/g2

s). We find in explicit examples, such as type IIA on S6 with
6-form flux and flavor D4-branes, that this extra term shifts, but does not eliminate, the
solution for the moduli for sufficiently small µ2. In particular, the value of interest (7.31)
for our explicit construction is in this range.

Another question is whether there are relevant perturbations of these Lifshitz solutions
as in [21], so that one must tune to reach the fixed point. We leave this question for future
work. There is yet another type of potential instability to consider in holographic models
which we will describe in the final subsection below. The present models are subject to
this instability, but as we will see the effect is negligible — the instability is very slow —
in certain limits (large N , large radius or finite temperature).

7.4 Backreaction in a Fermi surface model

Refs. [7–11] considered a possible holographic model of a Fermi liquid, in which a Reissner-
Nordstrom black hole is surrounded by a bulk density of charged fermions. Although
somewhat different from the baryon gas considered in the previous model, we are led to
examine the backreaction of the fermions on the solution.

The Einstein-Maxwell action

S =
1

2κ2

∫
d4x
√
−g
(
R+

1
L2

2

− L2
2

2e2
3

FµνF
µν

)
, (7.33)
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has an AdS2 × R2 solution

ds2 = L2
2

(
−dτ2 + dv2

v2
+ dxidxi

)
,

Aτ = e3/v . (7.34)

In the constructions of [7–11], this near-horizon geometry goes over to AdS4 toward the
boundary, but our discussion will only involve the AdS2 region. Coupling in a Dirac fermion
of mass m and charge q, there is a condensation of bulk fermions when qe3 > mL2.

Let us calculate the total charge carried by these fermions. This is simple in the case
qe3 � 1, qe3 � mL2. The WKB approximation gives coordinate momentum kv ∼ qe3/v,
which is large on the scale v on which the geometry varies. Thus we study the bulk Fermi
sea in a locally flat geometry. The Fermi energy seen by an inertial observer is

qAτ̃ = qAτ/
√
−gττ = qe3/L2 , (7.35)

and the number density for relativistic fermions, in inertial coordinates, is

ñ =
q3A3

τ̃

3π2
=

q3e3
3

3π2L3
2

. (7.36)

To obtain the total density in the field theory we must integrate with the invariant volume
element in the radial direction,

ρCFT = q

∫
L2dv

v
ñ . (7.37)

The divergence at small v is cut off by the transition to the AdS4 geometry, but the
divergence at large v is real and implies that backreaction cannot be neglected.

This density should be compared with the charge density of the black hole itself,

ρRN =
1

κ2e3
, (7.38)

so that
ρCFT

ρRN
≈ q4e4

3

κ2

L2
2

ln∞ . (7.39)

We have assumed qe3 to be large to permit the WKB approximation, but the conclusion
is general as long as we are in the regime where there is a density of fermions. The vector
potential Aτ leaves a scale symmetry unbroken, so the density will always be constant in
inertial coordinates, and thus diverge with the spatial volume of AdS2. For qe3 not large,
the coefficient of the logarithm is small in the supergravity regime, and so the effect of the
backreaction becomes significant only at the largest scales.

To figure out the true geometry we again adopt the metric Ansatz

ds2 = L2
2

(
−e2γτ (v)dτ2 +

dv2

v2
+ e2γx(v)dxidxi

)
. (7.40)
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The action is

S = Sψ +
L2

2

2κ2

∫
d3x

∫
dy

(
eγτ+2γx(1 + 4γ̇τ γ̇x + 2γ̇2

x) +
1
e2

3

e−γτ+2γxȦ2
τ

)
, (7.41)

where y = ln v and a dot denotes ∂/∂y. The field equations are

1− 4γ̈x − 6γ̇2
x −

1
e2

3

e−2γτ Ȧ2
τ = 2κ2L2

2T
τ̃ τ̃ ,

1− 2γ̈x − 2γ̈τ − 2γ̇2
x − 2γ̇xγ̇τ − 2γ̇2

τ +
1
e2

3

e−2γτ Ȧ2
τ = −2κ2L2

2T
x̃x̃ ,

1− 4γ̇τ γ̇x − 2γ̇2
x −

1
e2

3

e−2γτ Ȧ2
τ = −2κ2L2

2T
ṽṽ ,

e−γτ Äτ − e−γτ (γ̇τ − 2γ̇x)Ȧτ = κ2e2
3L2j

τ̃ . (7.42)

We will again assume e3q to be large, so the inertial frame energy density, pressure, and
charge density are given by the local equation of state of the Fermi gas,14

T τ̃ τ̃ = 3T ṽṽ = 3T x̃x̃ =
q4A4

τ̃

4π2
, j τ̃ =

q4A3
τ̃

3π2
, Aτ̃ ≡ Aτ/L2e

γτ . (7.43)

It is natural to look for a solution with Lifshitz scaling, as the contraction of the
transverse directions will regulate the divergence of the charge. Inserting

γτ = ay , γx = by , Aτ = µecy , (7.44)

one finds that the field equations require that c = a and that

1− 6b2 − a2w = 3εw2 ,

1− 2a2 − 2ab− 2b2 + a2w = −εw2 ,

1− 4ab− 2b2 − a2w = −εw2 ,

abw = εw2 . (7.45)

Here we have defined w = µ2/e2
3, while

ε =
κ2

L2
2

q4e4
3

6π2
(7.46)

is the same dimensionless expansion parameter appearing in the charge ratio (7.39). These
four equations for the three unknowns a, b, w satisfy one linear relation, owing to the
Bianchi identity.

Expanding for small ε, we find

a ∼ −1 + ε , b ∼ −ε , w ∼ 1− ε , (7.47)

so we recover the unbackreacted solution as ε→ 0. The Lifshitz exponent z = a/b ∼ 1/ε is
large. Even for small ε, however, there is a large qualitative effect. The total flux emerging

14Backreaction of a bulk Fermi gas in another situation was considered in ref. [82].
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from v = ∞ now vanishes, and the charge previously attributed to the black hole is now
carried entirely by the bulk fermions. One can also see this from the charge (7.37): at
small ε the charge density is essentially unchanged, but the total volume is now∫

dv

v1+2ε
=

1
2ε
, (7.48)

with the result that the bulk contribution to the charge density is exactly equal to that
which had been attributed to the black hole. Although the local density of bulk fermions is
suppressed by κ2/L2

2, which is an inverse power of N , the bulk volume gives the reciprocal
power. Further, the horizon area is now zero, eliminating the widely discussed puzzle
regarding the zero temperature entropy.

Note that for mL2 > qe3 (which is outside the regime of Fermi surface behavior [7–
11]) there is no bulk charge and the horizon is still present. As e3 is increased, it becomes
energetically favorable for the charge instead to be carried by explicit bulk fermions. In
this phase, the black hole is unstable to radiating all its charge into the bulk. There is no
intermediate regime where the charge is shared between the black hole and the bulk. It
would be interesting to understand the behavior of the entropy during the transition.

The Fermi liquid pole identified in the second and fourth papers of [7–11] arises from
a state in the domain wall region between the AdS4 and AdS2 geometries, and so is not
strongly affected by this modification in the extreme IR.15 Also, the modification of the
throat involves energy scales exponentially small in L2/κ2, and so will have little effect at
temperatures larger than this. However, given there may be no small parameter L2/κ2 in
the real systems, the backreaction effect is likely to be important. The relation between
the bulk and boundary Fermi surfaces should be better understood.

7.5 Charged black holes versus probe branes

For many applications of the holographic correspondence to condensed matter systems, it
is essential to introduce a finite charge density. Some of the deepest questions in the field
are concerned with strongly coupled physics at finite density and the rearrangement of the
Fermi surface that appears to occur at quantum critical points in the cuprate and heavy
fermion phase diagrams. The strange metallic physics of these materials, that has been
the inspiration and focus of this paper, is likely to be tied to an exotic non-Fermi liquid
description of matter at finite density.

To capture the correct new physics, it is expected to be important to be in a regime
in which the strongly coupled charged degrees of freedom are not dilute, in the sense of
including nonlinearities in the charge density. While holography automatically works in a
strongly coupled regime, without quasiparticles, there have been two approaches to finite
density in the applied holography literature, and it may be useful to compare and contrast.

The charge density is the time component of a conserved current. Via the basic
holographic dictionary, a conserved current has a dual description as a Maxwell field.

15Note that the existence of these states in the domain wall, and the presence of the Fermi sea down to

the AdS2 horizon, are not directly connected. Over most of the parameter space of ref. [7–11], the former

implies the latter. However, T. Faulkner informs us that there are situations where this will not be the

case, and so the AdS2 geometry will still be present.
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Nonlinearities in the charge density in the field theory will be captured by interactions of
the Maxwell field in the bulk. In one approach (e.g. [7–11, 42, 43, 70, 83]) the Maxwell
action takes the usual simple quadratic form F 2. However, this Maxwell field is then
coupled to a dynamical metric and possibly charged fields which induce interactions in the
Maxwell sector. One fairly robust feature of this setup (in the large N limit) is that at
the quantum critical point (i.e. without relevant operators turned on or condensates) the
finite density theory is dual to a charged black hole which at zero temperature becomes an
extremal black hole with a near horizon AdS2 × R2 region.

A second approach is to consider a nonlinear action for the Maxwell field (e.g. [17–
19, 51, 54]) and ignore the interactions of the Maxwell field with the metric. This is the
probe approximation we have used in this paper. There is some ambiguity in choice of
an action here, a favorite is the DBI action [84], as this arises naturally on D-branes in
string theory. It also has the appealing property of a maximal field strength. Within string
theory, the square-root (DBI) action we have been using to govern the gauge fields is dual
to the action m

∫
dt
√

1− ẋ2 for the motion of relativistic particles. An interesting aspect of
the D-brane actions is that it may be possible to construct explicitly the gravitational dual
of a theory in which at weak coupling the charge density is carried entirely by fermions.

Ultimately to move into an experimentally interesting regime it is likely to be necessary
to combine these approaches. For instance, a phenomenological 3+1 dimensional bulk
model incorporating aspects from both approaches is a gravitating DBI action

S =
1

2κ2

∫
d4x
√
−g
(
R+

8
L2

)
− 1
κ2L2

∫
d4x

√
−det

(
gab + κL

g Fab

)
, (7.49)

with F = dA. The numerator of the cosmological constant term is 8 = 6 + 2 in order to
cancel the contribution of −2 from the DBI action at F = 0. One solution of this theory
that can be found explicitly is the metric

ds2 =
4L2

15ρ2

(
−
(

1− ρ2

ρ2
+

)2

dt2 + dρ2

)
+ L2

(
dx2 + dy2

)
, (7.50)

and field strength

F =
gL√
15κ

(
1− ρ2

ρ2
+

)
dρ ∧ dt
ρ2

=
g

2κL
vol2 . (7.51)

These are candidate solutions for the near horizon geometry of low temperature black
holes. The temperature is given by T = 1

πρ+
. In the zero temperature limit, ρ+ → ∞,

the metric becomes AdS2 × R2. Thus we see, as one should have anticipated, once gravi-
tational backreaction is included the DBI theory has important features in common with
the Einstein-Maxwell approach. As derived in the previous subsection, bulk fermions will
condense in this background, leading to a Lifshitz solution all told.

7.6 Fermi seasickness

For completeness, let us briefly note another source of instabilities which we have come
across in analyzing string-theoretic models of finite-density field theory.16 We will start by

16A similar class of instabilities is under investigation in other works [85, 86].
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describing the effect, and then explain that it is a very long-time instability in many finite
density systems, including those that we study.

String theory contains branes of various dimensionalities [87]. Within the d + 2 non-
compact dimensions, some of these are domain walls lying at some radial position v(t) in
the gravity side warped throat geometry; the radial position is a motion collective coordi-
nate of the brane. We include time dependence here because generically a domain wall feels
a nontrivial potential driving it to a larger or smaller value of v. If the potential provides a
restoring force driving all domain walls toward the IR (large v), then these branes do not
represent an additional instability. But if the potential drives any of the branes up toward
the UV end of the throat, this represents a new instability.

Such a potential may get contributions from many sources. In a quantum critical
theory, its form is limited by the scaling symmetry; an example of this is the λφ4 = L4/α′4v4

potential for anti-D3-branes in AdS5. Our main interest here is that at finite density, the
bulk gauge field dual to the quantum field theory chemical potential in general contributes
to this potential.

The effect of interest is rather simple. Consider for example a set of color p-branes and
flavor q-branes, with q > p. For massive charge carriers, the two are displaced from each
other. Flavors are p-q strings. A chemical potential for these strings introduces a finite
density of them. They pull out on the color branes, moving them away from the origin in
the space of adjoint scalar fields, toward the flavor branes. So far we have described this in
the weakly coupled D-brane picture, so let us translate this to strong coupling. The flavor
branes become space filling branes on the gravity side of the holographic correspondence,
the strong ’t Hooft coupling limit of the field theory. A flavor U(1) gauge field with an Fvt
field strength implements the chemical potential as we discussed at length in the above anal-
ysis. This field costs energy, but it can reduce its energy by ending on a domain wall p-brane
at a finite radial position v in the bulk. This introduces a potential driving the brane up the
throat. The potential suggested by this effect is linear, and hence tends to beat the under-
lying quantum critical potential near the origin even if the latter leads to a restoring force.

More generally, independently of the presence of flavor branes, this instability can
arise if the gravitational pull toward the bottom of the throat is overcompensated by
electric fields from fluxes which are presence in the construction. In the models of brane-
polarization-induced Lifshitz discussed above, we find that this instability arises for the
D2-brane theories describe there, with the exception of D2-D4. But the latter has an
instability in a transverse direction: a D2-brane brought out to a finite radial position is
unstable to dissolving into the flavor D4-branes in that case.

As we have mentioned, this instability involves a scalar field collective coordinate of
the domain wall branes. We might expect this problem to be absent in realistic field
theories for condensed matter physics, which may not include such scalar fields. However,
in holographic systems controlled by a general relativistic approximation and UV completed
by string theory, the ubiquity of branes suggests that this is a fairly generic issue. From
the point of view of the dual field theory, most CFT’s with geometric duals have nontrivial
moduli spaces or pseudomoduli spaces, and at finite density it often turns out to the case
that the moduli are driven away from the IR point of interest. It may be possible to
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prevent this problem with model building maneuvers, such as projecting out scalar modes
via orbifolding (e.g. by requiring that all the p branes be fractional branes).

Once this problem is present, is there any way to obtain relief from Fermi seasickness
without eliminating the Fermi sea itself and returning to the dry landscape? Firstly, it is
interesting to note that the motion of the brane collective coordinate toward or away from
the origin is limited by the speed of light in the bulk [36]; in the large-Nc approximation
in which we are working this process takes forever. Warming the system up also helps:
the black hole pulls the color branes back toward the origin. This renders the system
metastable.

Acknowledgments

We would like to thank A. O’Bannon, M. Beasley, G. Horowitz, T. Faulkner, E. Fradkin,
S. Kachru, A. Karch, S. Kivelson, D. Mateos, C. Nayak, M. Roberts, S. Sachdev, T.
Senthil and A. Sinha. E.S. and D.T. thank KITP and S.A.H., J.P., and S. Sachdev for
the stimulating workshop “Quantum Criticality and the AdS/CFT Correspondence” where
this collaboration began. J.P. transfers his share of the foregoing thanks to S.A.H. for doing
all the work, both conceptual and organizational, in making the workshop happen. We
also thank the organizers and participants of the KITP program “The Physics of Higher
Temperature Superconductivity”. The research of E.S. is supported by NSF grants PHY-
0244728 and PHY05-51164, by the DOE under contract DE-AC03-76SF00515, and by the
BSF. The research of S.A.H. is partially supported by DOE grant DE-FG02-91ER40654
and by the FQXi foundation. D.T. is supported by the Royal Society.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] G.R. Stewart, Non-Fermi-liquid behavior in d- and f-electron metals, Rev. Mod. Phys. 73
(2001) 797 [SPIRES].

[2] R.A. Cooper et al., Anomalous criticality in the electrical resistivity of La2−xSrxCuO4,
Science 323 (2009) 603.

[3] N.E. Hussey, Phenomenology of the normal state in-plane transport properties of high-Tc
cuprates, J. Phys. Cond. Matt. 20 (2008) 123201 [arXiv:0804.2984].

[4] S. Martin, A.T. Fiory, R.M. Fleming, L.F. Schneemeyer and J.V. Waszczak, Normal state
transport properties of Bi2+xSr2−yCuO6±δ crystals, Phys. Rev. B 41 (1990) 846.

[5] D. van de Marel et al., Quantum critical behaviour in a high-tc superconductor, Nature 425
(2003) 271 [SPIRES].

[6] A.W. Tyler and A.P. Mackenzie, Hall effect of single layer, tetragonal Tl2Ba2CuO6+δ near
optimal doping, Physica C 282-287 (1997) 1185.

[7] S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A CriticalFermi Ball, Phys. Rev.
D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

– 49 –

http://dx.doi.org/10.1103/RevModPhys.73.797
http://dx.doi.org/10.1103/RevModPhys.73.797
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA,73,797
http://arxiv.org/abs/0804.2984
http://dx.doi.org/10.1038/nature01978
http://dx.doi.org/10.1038/nature01978
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NATUA,425,271
http://dx.doi.org/10.1103/PhysRevD.79.086006
http://dx.doi.org/10.1103/PhysRevD.79.086006
http://arxiv.org/abs/0809.3402
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.3402


J
H
E
P
0
4
(
2
0
1
0
)
1
2
0

[8] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477
[SPIRES].

[9] M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the
Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

[10] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces
and AdS2, arXiv:0907.2694 [SPIRES].

[11] T. Faulkner et al., work in progress.

[12] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories,
string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

[13] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant.
Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

[14] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42
(2009) 343001 [arXiv:0904.1975] [SPIRES].

[15] J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518
[SPIRES].

[16] S.A. Hartnoll, Quantum Critical Dynamics from Black Holes, arXiv:0909.3553 [SPIRES].

[17] A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870]
[SPIRES].

[18] M. Kulaxizi and A. Parnachev, Holographic Responses of Fermion Matter, Nucl. Phys. B
815 (2009) 125 [arXiv:0811.2262] [SPIRES].

[19] M. Kulaxizi and A. Parnachev, Comments onFermi Liquid from Holography, Phys. Rev. D
78 (2008) 086004 [arXiv:0808.3953] [SPIRES].

[20] A. Karch, M. Kulaxizi and A. Parnachev, Notes on Properties of Holographic Matter, JHEP
11 (2009) 017 [arXiv:0908.3493] [SPIRES].

[21] S. Kachru, X. Liu and M. Mulligan, Gravity Duals of Lifshitz-like Fixed Points, Phys. Rev.
D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

[22] P. Koroteev and M. Libanov, On Existence of Self-Tuning Solutions in Static Braneworlds
without Singularities, JHEP 02 (2008) 104 [arXiv:0712.1136] [SPIRES].

[23] J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976) 1165 [SPIRES].

[24] Y. Ando, A.N. Lavrov, S. Komiya, K. Segawa and X.F. Sun, Mobility of the Doped Holes and
the Antiferromagnetic Correlations in Underdoped High-Tc Cuprates, Phys. Rev. Lett. 87
(2001) 017001-1.

[25] P. Phillips, Breakdown of One-Paramater Scaling in Quantum Critical Scenarios for the
High-Temperature Copper-oxide Superconductors, Phys. Rev. Lett. 95 (2005) 107002.

[26] U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP
03 (2009) 070 [arXiv:0812.5088] [SPIRES].

[27] R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136]
[SPIRES].

[28] G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes
with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183]
[SPIRES].

– 50 –

http://arxiv.org/abs/0903.2477
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2477
http://dx.doi.org/10.1126/science.1174962
http://arxiv.org/abs/0904.1993
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1993
http://arxiv.org/abs/0907.2694
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2694
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9905111
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3246
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://arxiv.org/abs/0904.1975
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.1975
http://arxiv.org/abs/0909.0518
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.0518
http://arxiv.org/abs/0909.3553
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.3553
http://dx.doi.org/10.1088/1126-6708/2007/09/024
http://arxiv.org/abs/0705.3870
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.3870
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.016
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.016
http://arxiv.org/abs/0811.2262
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2262
http://dx.doi.org/10.1103/PhysRevD.78.086004
http://dx.doi.org/10.1103/PhysRevD.78.086004
http://arxiv.org/abs/0808.3953
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.3953
http://dx.doi.org/10.1088/1126-6708/2009/11/017
http://dx.doi.org/10.1088/1126-6708/2009/11/017
http://arxiv.org/abs/0908.3493
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.3493
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://dx.doi.org/10.1103/PhysRevD.78.106005
http://arxiv.org/abs/0808.1725
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1725
http://dx.doi.org/10.1088/1126-6708/2008/02/104
http://arxiv.org/abs/0712.1136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1136
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,B14,1165
http://dx.doi.org/10.1103/PhysRevLett.95.107002
http://dx.doi.org/10.1088/1126-6708/2009/03/070
http://dx.doi.org/10.1088/1126-6708/2009/03/070
http://arxiv.org/abs/0812.5088
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.5088
http://dx.doi.org/10.1088/1126-6708/2009/06/075
http://arxiv.org/abs/0905.1136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.1136
http://dx.doi.org/10.1103/PhysRevD.80.126003
http://arxiv.org/abs/0905.3183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.3183


J
H
E
P
0
4
(
2
0
1
0
)
1
2
0

[29] K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80
(2009) 104039 [arXiv:0909.0263] [SPIRES].

[30] S.W. Hawking and S.F. Ross, Duality between Electric and Magnetic Black Holes, Phys. Rev.
D 52 (1995) 5865 [hep-th/9504019] [SPIRES].

[31] C.P. Burgess, Open string instability in background electric fields, Nucl. Phys. B 294 (1987)
427 [SPIRES].

[32] V.V. Nesterenko, The dynamics of open strings in a background electromagnetic field, Int. J.
Mod. Phys. A 4 (1989) 2627 [SPIRES].

[33] C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B
296 (1992) 77 [hep-th/9209032] [SPIRES].

[34] R. Gopakumar, J.M. Maldacena, S. Minwalla and A. Strominger, S-duality and
noncommutative gauge theory, JHEP 06 (2000) 036 [hep-th/0005048] [SPIRES].

[35] N. Seiberg, L. Susskind and N. Toumbas, Strings in background electric field, space/time
noncommutativity and a new noncritical string theory, JHEP 06 (2000) 021
[hep-th/0005040] [SPIRES].

[36] M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505
[hep-th/0404084] [SPIRES].
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