2,682 research outputs found
Quantum Critical Superfluid Flows and Anisotropic Domain Walls
We construct charged anisotropic AdS domain walls as solutions of a
consistent truncation of type IIB string theory. These are a one-parameter
family of solutions that flow to an AdS fixed point in the IR, exhibiting
emergent conformal invariance and quantum criticality. They represent the
zero-temperature limit of the holographic superfluids at finite superfluid
velocity constructed in arXiv:1010.5777. We show that these domain walls exist
only for velocities less than a critical value, agreeing in detail with a
conjecture made there. We also comment about the IR limits of flows with
velocities higher than this critical value, and point out an intriguing
similarity between the phase diagrams of holographic superfluid flows and those
of ordinary superconductors with imbalanced chemical potential.Comment: 11 pages, 3 figures. V2: Very minor corrections. JHEP versio
Type IIB Holographic Superfluid Flows
We construct fully backreacted holographic superfluid flow solutions in a
five-dimensional theory that arises as a consistent truncation of low energy
type IIB string theory. We construct a black hole with scalar and vector hair
in this theory, and study the phase diagram. As expected, the superfluid phase
ceases to exist for high enough superfluid velocity, but we show that the phase
transition between normal and superfluid phases is always second order. We also
analyze the zero temperature limit of these solutions. Interestingly, we find
evidence that the emergent IR conformal symmetry of the zero-temperature domain
wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure
The Many Phases of Holographic Superfluids
We investigate holographic superfluids in AdS_{d+1} with d=3,4 in the
non-backreacted approximation for various masses of the scalar field. In d=3
the phase structure is universal for all the masses that we consider: the
critical temperature decreases as the superfluid velocity increases, and as it
is cranked high enough, the order of the phase transition changes from second
to first. Surprisingly, in d=4 we find that the phase structure is more
intricate. For sufficiently high mass, there is always a second order phase
transition to the normal phase, no matter how high the superfluid velocity. For
some parameters, as we lower the temperature, this transition happens before a
first order transition to a new superconducting phase. Across this first order
transition, the gap in the transverse conductivity jumps from almost zero to
about half its maximum value. We also introduce a double scaling limit where we
can study the phase transitions (semi-)analytically in the large velocity
limit. The results corroborate and complement our numerical results. In d=4,
this approach has the virtue of being fully analytically tractable.Comment: 31 pages, 19 figure
The Structure of the Non-SUSY Baryonic Branch of Klebanov-Strassler
We study the two-dimensional space of supergravity solutions corresponding to
non-supersymmetric deformations of the baryonic branch of Klebanov-Strassler.
By combining analytical methods with a numerical survey of the parameter space,
we find that this solution space includes as limits the softly-broken N=1
solutions of Gubser et al. and those of Dymarsky and Kuperstein. We also
identify a one-dimensional family of solutions corresponding to a natural
non-supersymmetric generalisation of Klebanov-Strassler, and one corresponding
to the limit in which supersymmetry is completely absent, even in the far UV.
For almost all of the parameter space we find indications that much of the
structure of the supersymmetric baryonic branch survives.Comment: 29 pages plus appendices, 11 figure
Drag force in a strongly coupled anisotropic plasma
We calculate the drag force experienced by an infinitely massive quark
propagating at constant velocity through an anisotropic, strongly coupled N=4
plasma by means of its gravity dual. We find that the gluon cloud trailing
behind the quark is generally misaligned with the quark velocity, and that the
latter is also misaligned with the force. The drag coefficient can be
larger or smaller than the corresponding isotropic value depending on the
velocity and the direction of motion. In the ultra-relativistic limit we find
that generically . We discuss the conditions under which this
behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference
Sum Rules from an Extra Dimension
Using the gravity side of the AdS/CFT correspondence, we investigate the
analytic properties of thermal retarded Green's functions for scalars,
conserved currents, the stress tensor, and massless fermions. We provide some
results concerning their large and small frequency behavior and their pole
structure. From these results, it is straightforward to prove the validity of
various sum rules on the field theory side of the duality. We introduce a novel
contraction mapping we use to study the large frequency behavior of the Green's
functions.Comment: v2: 23 pages (plus appendix), revised presentation, discussion of
branch cuts moved to appendix, and some minor changes; v1: 24 pages (plus
appendix
D3-brane Potentials from Fluxes in AdS/CFT
We give a comprehensive treatment of the scalar potential for a D3-brane in a
warped conifold region of a compactification with stabilized moduli. By
studying general ultraviolet perturbations in supergravity, we systematically
incorporate `compactification effects' sourced by supersymmetry breaking in the
compact space. Significant contributions to the D3-brane potential, including
the leading term in the infrared, arise from imaginary anti-self-dual (IASD)
fluxes. For an arbitrary Calabi-Yau cone, we determine the most general IASD
fluxes in terms of scalar harmonics, then compute the resulting D3-brane
potential. Specializing to the conifold, we identify the operator dual to each
mode of flux, and for chiral operators we confirm that the potential computed
in the gauge theory matches the gravity result. The effects of four-dimensional
curvature, including the leading D3-brane mass term, arise directly from the
ten-dimensional equations of motion. Furthermore, we show that gaugino
condensation on D7-branes provides a local source for IASD flux. This flux
precisely encodes the nonperturbative contributions to the D3-brane potential,
yielding a promising ten-dimensional representation of four-dimensional
nonperturbative effects. Our result encompasses all significant contributions
to the D3-brane potential discussed in the literature, and does so in the
single coherent framework of ten-dimensional supergravity. Moreover, we
identify new terms with irrational scaling dimensions that were inaccessible in
prior works. By decoupling gravity in a noncompact configuration, then
systematically reincorporating compactification effects as ultraviolet
perturbations, we have provided an approach in which Planck-suppressed
contributions to the D3-brane effective action can be computed.Comment: 70 page
The Non-SUSY Baryonic Branch: Soft Supersymmetry Breaking of N=1 Gauge Theories
We study a non-supersymmetric deformation of the field theory dual to the
baryonic branch of Klebanov-Strassler. Using a combination of analytical
(series expansions) and numerical methods we construct non-supersymmetric
backgrounds that smoothly interpolate between the desired UV and IR behaviors.
We calculate various observables of the field theory and propose a picture of
soft breaking by gaugino masses that is consistent with the various
calculations on the string side.Comment: 32 pages plus many appendixes. One figur
XRCC2 R188H (rs3218536), XRCC3 T241M (rs861539) and R243H (rs77381814) single nucleotide polymorphisms in cervical cancer risk
Human Papillomavirus (HPV) is the main cause of cervical cancer and its precursor lesions. Transformation may be induced by several mechanisms, including oncogene activation and genome instability. Individual differences in DNA damage recognition and repair have been hypothesized to influence cervical cancer risk. The aim of this study was to evaluate whether the double strand break gene polymorphisms XRCC2 R188H G>A (rs3218536), XRCC3 T241M C>T (rs861539) and R243H G>A (rs77381814) are associated to cervical cancer in Argentine women. A case control study consisting of 322 samples (205 cases and 117 controls) was carried out. HPV DNA detection was performed by PCR and genotyping of positive samples by EIA (enzyme immunoassay). XRCC2 and 3 polymorphisms were determined by pyrosequencing. The HPV-adjusted odds ratio (OR) of XRCC2 188 GG/AG genotypes was OR = 2.4 (CI = 1.1-4.9, p = 0.02) for cervical cancer. In contrast, there was no increased risk for cervical cancer with XRCC3 241 TT/CC genotypes (OR = 0.48; CI = 0.2-1; p = 0.1) or XRCC3 241 CT/CC (OR = 0.87; CI = 0.52-1.4; p = 0.6). Regarding XRCC3 R243H, the G allele was almost fixed in the population studied. In conclusion, although the sample size was modest, the present data indicate a statistical association between cervical cancer and XRCC2 R188H polymorphism. Future studies are needed to confirm these findings.Fil: Perez, Luis Orlando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Crivaro, Andrea Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Barbisan, Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Poleri, Lucía Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; ArgentinaFil: Golijow, Carlos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET- La Plata. Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout". Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria; Argentin
Short-cut to new anomalies in gravity duals to logarithmic conformal field theories
Various massive gravity theories in three dimensions are conjecturally dual
to logarithmic conformal field theories (LCFTs). We summarise the status of
these conjectures. LCFTs are characterised by the values of the central charges
and the so-called "new anomalies". We employ a short-cut to calculate these new
anomalies in generalised massive gravity and in the recently proposed
higher-derivative gravity theories with holographic c-theorem. Both cases
permit LCFTs exhibiting intriguing features, like rank three Jordan cells or
non-zero central charges. Finally, as an example we discuss in some detail the
partially massless version of new massive gravity, a theory with several
special properties that we call "partially massless gravity".Comment: 34 pages, 2 figures; v2: added references; v3: Several rewordings in
the introduction and section 2, added references. Matches published versio
- …
