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1 Introduction

Quantum critical points are expected to be of significance in understanding the ground

states of high-Tc superconductors. Holographic constructions1 of such quantum critical

(hence zero-temperature) superconductors give rise to domain wall solutions, which capture

the holographic RG flow from a symmetric state in the UV to a symmetry-breaking vacuum

in the IR [1].

Examples of such solutions were presented in [4, 5]. They arise in consistent truncations

of type IIB and M-theory containing an abelian gauge field and a charged scalar with a

symmetry-breaking potential. To trigger the RG flow, the UV theory was deformed by

a chemical potential µ. That is, the U(1) symmetry is not broken explicitly, rather the

theory is deformed by means of an uncharged operator µJ0 (i.e., ABµ J
µ with only the time

component turned on2). This induces a non-vanishing VEV for the charged scalar, hence

breaking the U(1) symmetry spontaneously. The domain walls interpolate between two

AdS minima, in the UV and IR, and represent the ground states of holographic type IIB

and M-theory superconductors constructed in [6] and [7].

A natural generalization of this idea is to break the isotropy by turning on a spatial

component of the boundary vector potential. The corresponding solutions can be inter-

preted as the zero temperature limits of holographic superfluid flows (i.e. a superfluid with

finite superfluid velocity ξ) discussed first in [8, 9] and generalized in various ways in [10–

12]. In [13], fully backreacted holographic superfluid flow solutions were constructed at

finite temperature within the same type IIB consistent truncation of [4]. The advantage

of a backreacted solution was that one could systematically lower the temperature in a

fully controlled way. Using this approach, strong indications were obtained in [13] that in

the zero-temperature limit the IR AdS space found by [4] is actually robust even when a

superfluid velocity is turned on, at least up to a critical value ξc. Various pieces of evidence

were presented that there should exist an anisotropic domain wall solution interpolating

between two AdS spaces, for velocities in the range 0 < ξ < ξc. On the other hand, the

1Holographic superconductors were first constructed in [2, 3].
2The superscript B denotes the fact that these are boundary quantities.

– 1 –



J
H
E
P
0
9
(
2
0
1
1
)
1
3
1

Normal
phase

Superfluid
phase

T

ξcξ ξ*

Quantum
criticality

region
FFLO−like

Figure 1. The (qualitative) phase diagram of holographic superfluids. At zero temperature, a

quantum critical point is found for velocities below a critical value, ξc. Above ξc the system enters

a more anisotropic phase where the deformation induced by ξ affects the RG-flow strongly, and

brings the system away from any obvious AdS-like IR fixed point.

holographic superfluid flows constructed in [13] exist in the bigger range 0 < ξ < ξ∗, with

ξ∗ > ξc being the velocity above which superfluidity is destroyed and the system is always in

the normal phase. The low temperature behavior of the solutions in the range ξc < ξ < ξ∗
indicated that a different non AdS-like IR phase emerges at zero temperature. In this

range the perturbation induced by ξ turns out to be too strong to be washed out by the

RG-flow, so that the anisotropy still survives at small radii, suggesting the non-existence

of any obvious quantum critical point.

In the present paper we put the speculations of [13] on a concrete footing by explicitly

constructing gravitational solutions describing the ground state of holographic superfluid

flows. We find that anisotropic AdS-to-AdS domain wall solutions indeed exist only in

the expected range, 0 < ξ < ξc, and make various quantitative checks that these are the

zero-temperature limits of the superfluid flows constructed in [13]. On the contrary, for

higher velocities we do not see the emergence of an AdS-like geometry in the IR. It is an

interesting question to ask whether there is a meaningful IR limit in this regime, and if so,

whether full solutions can be constructed explicitly. While we did not succeed in finding

any meaningful geometry emerging in the IR for ξc < ξ < ξ∗, we offer a few preliminary

comments in the concluding section.

Intriguingly, the phase diagram which emerges from our analysis, figure 1, is reminis-

cent of those expected for real-life superconductors when one induces (e.g., by an external

magnetic field) an imbalance δµ in the chemical potential between the two populations

of fermionic particles that form Cooper pairs.3 For high enough δµ, still lower than the

critical value above which superconductivity is completely destroyed, the system enjoys

an anisotropic phase at T = 0 known as FFLO phase. This phase is characterized by

a spontaneous breaking of translational invariance produced by the imbalance δµ, and is

3We thank A. Cotrone for bringing our attention to these systems.
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separated from the ordinary superconducting phase by a Chandrasekhar-Clogston (CC)

bound. In this regime, the system finds it energetically favorable to be in a superconduct-

ing anisotropic configuration, where Cooper pairs have a non zero net momentum [15].

While this has been proven for BCS superconductors [16, 17], it is argued to be a generic

phenomenon also holding e.g. in high-Tc superconductors. Although the physical setups are

different, the response of this system to δµ is very similar to the response of our holographic

setups to a non-vanishing superfluid velocity ξ. It would be interesting to investigate this

analogy further, and more generally, use holography to study superconductors with an

imbalanced chemical potential, including the prediction for a CC bound.

The rest of this paper is organized as follows. In section 2 we present the effective

five-dimensional bulk action, our ansatz for the various fields, and discuss the IR and UV

boundary conditions our solutions should satisfy. Section 3 contains our one-parameter

family of solutions and a discussion of their properties. Finally in section 4, we comment

on our results and discuss the regime for which AdS domain wall solutions do not seem

to exist.

2 The model: construction and strategy

The theory we will use is the consistent truncation of low energy type IIB string theory

considered in [6]. The action takes the form

SIIB =

∫

d5x
√−g

[

R− L2

3
FabF

ab +
1

4

(

2L

3

)3

ǫabcdeFabFcdAe +

−1

2

(

(∂aψ)2 + sinh2 ψ(∂aθ − 2Aa)
2 − 6

L2
cosh2

(

ψ

2

)

(5 − coshψ)

)]

. (2.1)

We have set 16πG = 1 and the conventions are such that ǫ01234 = 1/
√−g, and we have

written the charged (complex) scalar by splitting the phase and the modulus in the form

ψeiθ. The Abelian gauge field A is dual to an R-symmetry in the boundary field theory [6]

and the scalar field has R-charge R = 2. The general equations of motion that follow from

this action (working in the gauge θ = 0) can be found in [13].

In [13], strong evidence was presented for the existence of an anisotropic AdS domain

wall that was a solution of the above Lagrangian. Our aim here is to construct it explicitly.

To do this, we will write down an ansatz for the metric, gauge field and scalar with only

radial dependence, so that the resulting equations of motion are ordinary differential equa-

tions. We will take the same ansatz as was used in [13]. This is equivalent to an anisotropic

generalization of the structure considered by Gubser et al. in [4]. Specifically, we take

ds2 = −r
2f(r)

L2
dt2 +

L2h(r)2

r2f(r)
dr2 − 2C(r)

r2

L2
dt dx+

r2

L2
B(r)dx2 +

r2

L2
dy2 +

r2

L2
dz2 (2.2)

for the metric, and

A = At(r) dt +Ax(r) dx , ψ = ψ(r) , (2.3)

for the gauge and the scalar fields.

– 3 –
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With this ansatz, the full set of equations of motion can be massaged to the form of

two first order and five second order differential equations for seven functions. Since the

structure of the ansatz is the same, the equations of motion we get are also the same as

in [13]. As discussed there, these equations exhibit four scaling symmetries and we quote

them here for convenience

t→ t/a , f → a2f , h→ ah , C → aC , At → aAt , (2.4)

x→ x/b , B → b2B , C → bC , Ax → bAx , (2.5)

(r, t, x, y, z, L) → α(r, t, x, y, z, L) , (At, Ax) → (At, Ax)/α , (2.6)

r → βr , (t, x, y, z) → (t, x, y, z)/β , (At, Ax) → β(At, Ax) . (2.7)

We can forget the third scaling symmetry by setting the length scale L = 1. The remaining

scalings will be very useful in what follows.

So far our setup is identical to that in [13]. The crucial difference is that the IR

boundary conditions we will impose now are those of an IR AdS space, not a black hole

horizon. In our coordinates, IR corresponds to r → 0 and UV to r → ∞. Our aim

now is to construct a domain wall solution that interpolates between two AdS vacua,

corresponding to the flow between the symmetry-preserving (UV) and symmetry-breaking

(IR) vacua of the scalar potential. To compute the IR expansion, we need to know the

IR AdS background. The IR AdS scale is fixed by the value of the scalar potential at its

symmetry-breaking minimum in the action above. The minimum is at

ψ0 = ArcCosh 2 , (2.8)

and the effective AdS scale there can be computed from the action to be

LIR =
23/2

3
L . (2.9)

Unlike the finite temperature case, the correct IR boundary expansions of the fields are

now no longer of a simple power series form in r. The easiest way to see this is to note

that the scalar field equation in the IR AdS background allows the solution

ψ = ArcCosh 2 + ψ1,0 r
α , (2.10)

with ψ1,0 an integration constant. The reason for choosing this specific form for the sub-

scripts on this coefficient will become clear momentarily. Here, α can be computed4 by

solving the scalar field equation in the IR AdS, and the result is

α = 2
√

3 − 2 ≃ 1.46 . (2.11)

Since we are looking for a non-trivial solution that starts off at the symmetry-breaking

minimum for small r, we should allow for such irrational powers in the IR expansion when

4This value was computed also in [4], but the value reported there has a typo.
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trying to extrapolate from the IR to UV. We will try out an expansion5 for the fields by

writing them in powers of the two variables x and y defined as

x ≡ rα , y ≡ r , (2.12)

and then constrain the coefficients by demanding that they satisfy the equations of motion.

This fixes the form of the fields in the IR (up to O(r2)) to be

f(r) =
9

8
h2

0,0 +
4 A2

t(0,2)

3
y2 + . . . , h(r) = h0,0 + h0,2 y

2 + . . . ,

B(r) = B0,0 −
4A2

x(0,2)

3
y2 + . . . , C(r) = C0,0 +

4Ax(0,2)At(0,2)

3
y2 + . . . ,

At(r) = At(0,2) y
2 + . . . , Ax(r) = Ax(0,2) y

2 + . . . ,

ψ(r) = ArcCosh 2+ψ1,0 x+ψ0,2 y
2+ . . . , (2.13)

where not all of the coefficients are independent. In particular

h0,2 =
2(−27h4

0,0 A
2
x(0,2)+64C2

0,0A
2
t(0,2)+48h2

0,0 C0,0At(0,2) Ax(0,2)+96h2
0,0 B0,0A

2
t(0,2))

27(8C2
0,0 h0,0+9B0,0 h3

0,0)
,

(2.14)

ψ0,2 =
16(9h2

0,0 A
2
x(0,2) − 16C0,0 At(0,2) Ax(0,2) − 8B0,0A

2
t(0,2))

3
√

3(8C2
0,0 + 9B0,0 h2

0,0)
. (2.15)

The notation for the coefficients should be clear by now: in the IR expansion for a field

φ, the coefficient of xayb is denoted as φa,b. All higher order coefficients (which include

powers of x, powers of y and mixed powers) are fixed iteratively in terms of the lower order

coefficients due to the equations of motion. We will need the IR expansion to start the

numerical integration from the IR, but the explicit forms of the higher coefficients are not

very enlightening, so we will not report them here. Note, finally, that there are only six

independent quantities in the IR, just as there were at the horizon in [13]. In the present

case, these independent quantities are

{h0,0 , B0,0 , C0,0 , At(0,2) , Ax(0,2) , ψ1,0} . (2.16)

Our strategy in constructing the solutions will be to pick numerical values for these IR

data, and integrate the equations of motion numerically all the way to some very large r,

corresponding to the UV. At the UV boundary, we can again solve the equations of motion

straightforwardly and look for a consistent expansion that reproduces the curves arising

from this integration. The relevant series expansions can be found in eqs. (3.18)-(3.23)

and appendix A of [13] and we will use the notations there in our UV discussion. To

get asymptotically AdS boundary conditions in the UV, we need to set B0 = 1 = h0, and

C0 = 0 = ψ1. The former two conditions can be accomplished via the rescalings (2.4), (2.5),

5We thank S. Gubser and S. Pufu for helpful discussions on this.
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while a shooting technique is required for the latter two. This gives rise to the eight

independent boundary quantities [13]:

(f4 , B4 , C4 , At,0 , At,2 , Ax,0 , Ax,2 , ψ3) . (2.17)

We will also use the rescaling (2.7) to set the leading piece of At at the boundary (namely

At,0 ≡ µ) to unity.6 Note that since this rescaling involves r, we will need to appropriately

rescale the coefficients of the IR expansion as well, when launching the integration.7 Once

we fix the chemical potential to one, for any given superfluid velocity ξ (before the rescaling

of the solution that sets At,0 to unity, ξ is given by Ax,0/At,0) the number of independent

parameters at the boundary is six, which is the same as the number of horizon data.

Therefore we expect to find at most discretely many domain wall solutions for any given

superfluid velocity. As discussed in [4] we will look for the solution where the radial profile

of the scalar field has the least number of nodes.

3 Results

After the shooting and the rescaling discussed in the previous section, we have the domain

wall solution we were seeking. We present the plots of the various functions for a selected

value of the velocity in figure 2. We have checked that the plots for other velocities

are qualitatively similar. We find that solutions exist for velocities ξ ranging from 0 to

ξc ≈ 0.374, which is consistent with the expectation of [13]: there we found evidence that

an AdS IR fixed point exists for low enough velocities but not for ξ ≥ 0.40, even though

the finite-temperature superfluid phase exists to a higher value ξ∗ ∼ 0.5. It was also found

there that the condensate, as defined by

〈ODW 〉 =
(
√

2ψ3)
1/3

√

1 −A2
x,0

(3.1)

tends to a fixed value as the temperature is lowered, for small enough velocities. (In writing

the above expression for the condensate, we use the fact that At,0 has been rescaled to one.)

We can compute the same quantity using our domain wall solutions, and we find that for all

the velocities for which it exists, the value of this condensate is a constant and is precisely

equal to the one found as the zero-temperature limit of our finite temperature solutions.

We can also perform another check of our solutions, by considering the isotropic (i.e., ξ = 0)

limit. In that case, it was found in [4] that the object 〈O〉GPR ≡ ψ3

(2/
√

3)3
≈ 0.322. We have

checked that our solutions reproduce this value in the isotropic limit.

The solutions we constructed were obtained via a shooting method. So one might

worry that the absence of solutions above ξ ≈ 0.374 is an artifact of the numerics. It is

difficult to disprove this conclusively, but we can look at the profiles of some quantities

6In [4] this scaling was used to set the horizon datum At(0,2) = 1. We prefer instead to set At,0 = 1 at

the boundary: this corresponds to working in a fixed chemical potential ensemble in the gauge theory.
7In the finite temperature case of [13], this scaling shifts the horizon radius and therefore effectively

introduces a new parameter, the temperature.
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Figure 2. Plots of the various functions as a function of the radial coordinate for ξ = 0.33. A

logarithmic radial coordinate has been chosen to illustrate that the solution is a domain wall. For

other values of the superfluid velocity in the range 0 < ξ < ξc the nature of the curves is similar.

as the velocity is changed and see what happens to them as the critical velocity ξc is

approached. One such useful quantity is the refractive index between the UV and the IR.

We can define this quantity as the ratio of the propagation velocities of light in the UV

and IR

n =

√

fUV
fIR

(3.2)

where f is contained in the time component of the metric (2.2). We plot its behavior as

a function of the superfluid velocity in figure 3. It is clear from the figure that at ξc it

diverges, strongly suggesting that domain wall solutions of this kind do not exist beyond

ξc. It turns out that the AdS space in the IR degenerates as ξ → ξc because h0,0 in the IR

expansion (2.13) tends to zero.

4 Interpretation and discussion

Let us summarize our results and discuss them in light of the Criticality Pairing Conjecture

(CPC) proposed in [4]. We can state the CPC as follows. Consider a theory with a U(1)

symmetry that, once deformed by some appropriate operator, flows to an IR fixed point

– 7 –
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Figure 3. Plot of the refractive index as a function of the superfluid velocity. The refractive

index diverges around ξc ≈ 0.374, where the IR AdS space collapses and the domain walls we

have constructed cease to exist. In the isotropic limit the numerical value of the refractive index is

n ≈ 2.674 which is identical to what is reported in [1].

that breaks the U(1). Then the claim is that the theory or its deformations by operators

that do not break the U(1) explicitly has a finite density, zero temperature state whose

infrared behavior is controlled by the same IR fixed point.

The deformation considered in [4] is given by µJ0. This operator doesn’t break the

U(1) symmetry, and hence satisfies the premise of the CPC. The explicit construction of

the domain wall in [4] demonstrates that the deformation by this operator results in a flow

to AdS in the IR. In this paper, we considered a more general deformation, µJ0 +Ax,0J
x,

which breaks isotropy but which again does not break the U(1) symmetry. We find that

when this more general deformation is added, the system is controlled by the same AdS

IR fixed point, in agreement with the CPC. However, this holds only as long as the source

term, Ax,0, is small enough: for high enough velocity we seem to find a counter-example

to the CPC.

A violation of the CPC was presented in [18] where for small enough values of the charge

of the scalar the IR fixed point was destabilized. In our case, the parameter is not directly

visible in the supergravity Lagrangian, and therefore the destabilization that happens at

large velocities is of a different kind. Note that since we are working at zero temperature

and the theory is conformal, all non-zero values of the chemical potential are equivalent.

But when we turn on Ax,0 as well, we have a tunable parameter, namely the superfluid

velocity ξ = Ax,0/µ. Once this becomes too large, the anisotropy becomes too strong to

be washed out in the IR. This is similar to what happens in ordinary superconductors:

when the chemical potential imbalance becomes large, they enter an anisotropic FFLO

phase [15–17].

In fact, one of the questions we have left unanswered in this paper is that about the

possibility of constructing a useful zero-temperature limit for the superfluid flows in the

– 8 –



J
H
E
P
0
9
(
2
0
1
1
)
1
3
1

range ξc < ξ < ξ∗. As already mentioned, in [18] it was found that the CPC can be violated

if the scalar charge is tuned to be small, and in such case a Lifshitz geometry emerges in

the infrared. This is not unreasonable because spatial isotropy is not broken in that case

— only a charge density is turned on, and no current. In our case, spatial isotropy is

broken8 and our preliminary investigations suggest that the system is not controlled by a

simple Lifshitz (or generalized Lifshitz [19]) geometry. This can be understood as follows.

A geometry of the form

ds2 = −rztdt2 + rzrdr2 + rzxdx2 + rzydy2 + rzzdz2 (4.1)

has curvature scalars R and RabcdR
abcd that behave as

R ∼ 1

rzr+2
, RabcdR

abcd ∼ 1

r2zr+4
. (4.2)

(Generalized) Lifshitz corresponds to the case zr = −2 [19], and then both quantities are

constants. But numerically, as we lower the temperature of the finite temperature solutions,

we find that there is no region close to the horizon where both R and RabcdR
abcd stabilize

simultaneously. This could of course be a limitation of the numerics, but together with

the fact that this is happening at high velocities is a suggestion that if an IR geometry

exists, its anisotropy should take a different form. Allowing for zr 6= −2 might be another

possibility,9 so is the possibility of allowing non-trivial scalar and gauge field profiles in

the IR. Note, however, that just allowing non-trivial matter fields will not bypass the

constraints on the curvatures (4.2). The bottom line is that it would be interesting to

construct such an anisotropic AdS-to-nonAdS domain wall, if it exists. Our preliminary

attempts to look for one have been inconclusive. As reported in [13], at finite but small

temperature the curvature scalars begin to grow quite quickly as we approach the horizon,

so it is not obvious that there is a sensible way in which one can assign an IR geometry to

this flow. It is possible that the natural interpretation is that for velocities greater than ξc
the superfluid exhibits runaway in the IR and not a fixed point. Answering this question

might also let one understand to what extent the analogy between holographic superfluids

at finite superfluid velocity and superconductors with imbalanced chemical potential, can

actually be pushed.
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