17 research outputs found

    Remyelination in experimentally demyelinated connexin 32 KnockOut mice Remielinização em camundongos KnockOut para conexina 32 desmielinizados experimentalmente

    Get PDF
    The aim of this study was to evaluate the role of connexin 32 (Cx 32) during remyelination of the peripheral nervous system, through a local injection of either 0,1% ethidium bromide solution or saline in the sciatic nerve of Cx 32 knockout mice. Euthanasia was performed ranging from 1, 2, 3, 7, 15, 21 to 30 days after injection. Histochemical, immunohistochemical, immunofluorescence and transmission electron microscopical techniques were used to analyze the development of the lesions. Within the sciatic nerves, Schwann cells initially showed signs of intoxication and rejected their sheaths; after seven days, some thin newly formed myelin sheaths with uneven compactness and redundant loops (tomacula) were conspicuous. We concluded that the regeneration of lost myelin sheaths within the PNS followed the pattern already reported for this model in other laboratory species. Therefore, these results suggest that absence of Cx 32 did not interfere with the normal pattern of remyelination in this model in young mice.<br>Este estudo visou avaliar o papel da conexina 32 (Cx 32) durante a remielinização no sistema nervoso periférico. Uma injeção local de 0,1% de solução de brometo de etídio foi realizada no nervo ciático de camundongos deletados para a Cx 32, com eutanásia dos animais aos 1, 2, 3, 7, 15, 21 e 30 dias pós-injeção. Avaliações histoquímicas, imunoistoquímicas, por imunofluorescência e por microscopia eletrônica de transmissão foram utilizadas na análise do desenvolvimento das lesões. Nos nervos ciáticos, células de Schwann mostraram inicialmente sinais de intoxicação e rejeitaram suas bainhas. Após sete dias, observaram-se finas bainhas neoformadas, com compactação desigual e alças redundantes (tomácula). Conclui-se que a regeneração de bainhas de mielina perdidas no SNP seguiu o padrão já relatado deste modelo em outras espécies de laboratório. Portanto, estes resultados sugerem que a ausência da Cx 32 não interferiu com o padrão normal de remielinização em camundongos jovens neste modelo

    Angelman Syndrome

    No full text
    In this review we summarize the clinical and genetic aspects of Angelman syndrome (AS), its molecular and cellular underpinnings, and current treatment strategies. AS is a neurodevelopmental disorder characterized by severe cognitive disability, motor dysfunction, speech impairment, hyperactivity, and frequent seizures. AS is caused by disruption of the maternally expressed and paternally imprinted UBE3A, which encodes an E3 ubiquitin ligase. Four mechanisms that render the maternally inherited UBE3A nonfunctional are recognized, the most common of which is deletion of the maternal chromosomal region 15q11-q13. Remarkably, duplication of the same chromosomal region is one of the few characterized persistent genetic abnormalities associated with autistic spectrum disorder, occurring in >1–2 % of all cases of autism spectrum disorder. While the overall morphology of the brain and connectivity of neural projections appear largely normal in AS mouse models, major functional defects are detected at the level of context-dependent learning, as well as impaired maturation of hippocampal and neocortical circuits. While these findings demonstrate a crucial role for ubiquitin protein ligase E3A in synaptic development, the mechanisms by which deficiency of ubiquitin protein ligase E3A leads to AS pathophysiology in humans remain poorly understood. However, recent efforts have shown promise in restoring functions disrupted in AS mice, renewing hope that an effective treatment strategy can be found. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13311-015-0361-y) contains supplementary material, which is available to authorized users

    Recycling technologies

    No full text
    Recycling Technologies: Paper Fiber Waste Paper Characteristics Waste Paper Recycling Technologies Recycling Technologies: Glass Cullet Contaminants Cullet Recycling Technologies Recycling Technologies: Metals Ferrous Metals Ferrous Metal Recycling Technologies Nonferrous Metals Nonferrous Metal Recycling Technologies Recycling Technologies: Plastics Waste Plastic Sources and Characteristics Waste Plastic Recycling Technologies Recycling Technologies: Fibers (Textiles and Carpets) Textiles Textiles Recycling Technologies Carpets Carpet Recycling Technologies Future Directions: Innovative Control/Sorting Devices/Logics Integration in Recycling Plant
    corecore