77 research outputs found

    SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain Acyl-CoA dehydrogenase

    Get PDF
    SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the active site. Further, we show that VLCAD binds strongly to cardiolipin and isolated mitochondrial membranes via a domain near the C-terminus containing lysines K482, K492, and K507. Acetylation or succinylation of these residues eliminates binding of VLCAD to cardiolipin. SIRT3 deacetylates K507 while SIRT5 desuccinylates K482, K492, and K507. Sirtuin deacylation of recombinant VLCAD rescues membrane binding. Endogenous VLCAD from SIRT3 and SIRT5 knockout mouse liver shows reduced binding to cardiolipin. Thus, SIRT3 and SIRT5 promote fatty acid oxidation by converging upon VLCAD to promote its activity and membrane localization. Regulation of cardiolipin binding by reversible lysine acylation is a novel mechanism that is predicted to extrapolate to other metabolic proteins that localize to the inner mitochondrial membrane

    Suppression of MMP-2 Attenuates TNF-α Induced NF-κB Activation and Leads to JNK Mediated Cell Death in Glioma

    Get PDF
    BACKGROUND: Abrogation of apoptosis for prolonged cell survival is essential in cancer progression. In our previous studies, we showed the MMP-2 downregulation induced apoptosis in cancer cell lines. Here, we attempt to investigate the exact molecular mechanism of how MMP-2 depletion leads to apoptosis in glioma xenograft cell lines. METHODOLOGY/PRINCIPAL FINDINGS: MMP-2 transcriptional suppression by MMP-2siRNA (pM) induces apoptosis associated with PARP, caspase-8 and -3 cleavage in human glioma xenograft cells 4910 and 5310. Western blotting and cytokine array showed significant decrease in the cellular and secreted levels of TNF-α with concomitant reduction in TNFR1, TRADD, TRAF2, RIP, IKKβ and pIκBα expression levels resulting in inhibition of p65 phosphorylation and nuclear translocation in pM-treated cells when compared to mock and pSV controls. In addition MMP-2 suppression led to elevated Fas-L, Fas and FADD expression levels along with increased p38 and JNK phosphorylation. The JNK-activity assay showed prolonged JNK activation in pM-transfected cells. Specific inhibition of p38 with SB203580 did not show any effect whereas inhibition of JNK phosphorylation with SP600125 notably reversed pM-induced cleavage of PARP, caspase-8 and -3, demonstrating a significant role of JNK in pM-induced cell death. Supplementation of rhMMP-2 counteracted the effect of pM by remarkably elevating TNF-α, TRADD, IKKβ and pIκBα expression and decreasing FADD, Fas-L, and phospho-JNK levels. The EMSA analysis indicated significant reversal of pM-inhibited NF-κB activity by rhMMP-2 treatment which rescued cells from pM-induced cell death. In vivo studies indicated that pM treatment diminished intracranial tumor growth and the immuno histochemical analysis showed decreased phospho-p65 and enhanced phospho-JNK levels that correlated with increased TUNEL-positive apoptotic cells in pM-treated tumor sections. CONCLUSION/SIGNIFICANCE: In summary, our study implies a role of MMP-2 in the regulation of TNF-α mediated constitutive NF-κB activation and Fas-mediated JNK mediated apoptosis in glioma xenograft cells in vitro and in vivo

    Dietary Intake and Rural-Urban Migration in India: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Migration from rural areas of India contributes to urbanisation and lifestyle change, and dietary changes may increase the risk of obesity and chronic diseases. We tested the hypothesis that rural-to-urban migrants have different macronutrient and food group intake to rural non-migrants, and that migrants have a diet more similar to urban non-migrants. METHODS AND FINDINGS: The diets of migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by an interviewer-administered semi-quantitative food frequency questionnaire. A total of 6,509 participants were included. Median energy intake in the rural, migrant and urban groups was 2731, 3078, and 3224 kcal respectively for men, and 2153, 2504, and 2644 kcal for women (p<0.001). A similar trend was seen for overall intake of fat, protein and carbohydrates (p<0.001), though differences in the proportion of energy from these nutrients were <2%. Migrant and urban participants reported up to 80% higher fruit and vegetable intake than rural participants (p<0.001), and up to 35% higher sugar intake (p<0.001). Meat and dairy intake were higher in migrant and urban participants than rural participants (p<0.001), but varied by region. Sibling-pair analyses confirmed these results. There was no evidence of associations with time in urban area. CONCLUSIONS: Rural to urban migration appears to be associated with both positive (higher fruit and vegetables intake) and negative (higher energy and fat intake) dietary changes. These changes may be of relevance to cardiovascular health and warrant public health interventions

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI &lt;18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For school&#x2;aged children and adolescents, we report thinness (BMI &lt;2 SD below the median of the WHO growth reference) and obesity (BMI &gt;2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Copper- and iron-induced differential fibril formation in \alpha-synuclein: TEM study

    No full text
    \alpha-Synuclein filaments are the central component of intracytoplasmic inclusion bodies characteristic of Parkinson's disease (PD) and related disorders. Metals are the significant etiological factors in PD, and their interaction with \alpha-synuclein affect dramatically the kinetics of fibrillation. Currently, we have investigated the influence of Cu(II) and Fe(III) on \alpha-synuclein fibril formation. Cu(II) and Fe(III) selectively and differentially induced the formation of discrete \alpha-synuclein fibrillar species. Transmission electron microscopy was used to monitor the aggregation state of \alpha-synuclein (wild-type, A30P, A53T, and E46K) after 60 h with stirring at 37C37^{\circ}C in the presence and absence of metal ions. Cu(II) has induced thin long network-like fibrils with the wild-type of \alpha-synuclein, while the mutant, showed amorphous aggregates with no fibrillar forms. Fe(III) induced short and thick fibrils with both wild and mutant forms and were similar to \alpha-synuclein fibrils incubated without metal ion. The present study illustrates the metal-specific fibril morphology, and has relevance in understanding the role of metals in neurodegeneration

    Not Available

    No full text
    Not AvailableAngiotensin-converting enzyme 2 (ACE2) is a transmembrane protein that functions as a receptor for coronavirus spike protein. When spike protein fragments as the ligand binds with ACE2 protein, this ACE2 protein functions as a virus receptor, participating in the biological process known as the viral particle entry in the host cell. Hence, an in-silico study was carried out since it is faster and less expensive than trial and error methods based on experimental investigations. To study the effect of Acacia farnesiana phytochemicals on spike protein, molecular docking analyses were carried out. In this study, twelve phytochemicals from Acacia farnesiana have been selected as small molecules based on their ACEI and anti- inflammatory nature to evaluate molecular interaction between spike protein of SARSCoV2 with ACE2 of the human complex molecule. Gallic acid, methyl gallate, kaempferol, Rhamnocitrin, naringenin, apigenin, ellagic acid, ferulic acid, myricetin, Diosmetin, Caffeic acid, and Quercetin were chosen as competent natural compounds from Acacia farnesiana as potent small molecules against COVID-19 and further ADME analysis were carried out. The result indicated that due to the presence of ACEIs and anti-inflammatory phytochemicals in Acacia farnesiana, the bound structure of ACE2 and spike protein becomes unstable. Therefore, these natural compounds can show antiviral activity by destabilizing spike protein binding with the human host ACE2 receptor.Not Availabl
    corecore