147 research outputs found

    Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored the role of the MEK/ERK pathway in receptor expression following ischemic brain injury using the specific MEK1 inhibitor U0126.</p> <p>Methods and result</p> <p>Rats were subjected to a 2-h middle cerebral artery occlusion (MCAO) followed by reperfusion for 48-h and the ischemic area was calculated. The expression of phosphorylated ERK1/2 and Elk-1, and of endothelin ET<sub>A </sub>and ET<sub>B</sub>, angiotensin AT<sub>1</sub>, and 5-hydroxytryptamine 5-HT<sub>1B </sub>receptors were analyzed with immunohistochemistry using confocal microscopy in cerebral arteries, microvessels and in brain tissue. The expression of endothelin ET<sub>B </sub>receptor was analyzed by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1), the enhanced vascular receptor expression, and attenuated the cerebral infarct and improved neurology score.</p> <p>Conclusion</p> <p>Our results show that MCAO results in upregulation of cerebrovascular ET<sub>B</sub>, AT<sub>1 </sub>and 5-HT<sub>1B </sub>receptors. Blockade of this event with a MEK1 inhibitor as late as 6 h after the insult reduced the enhanced vascular receptor expression and the associated cerebral infarction.</p

    A simple strategy guides the complex metabolic regulation in Escherichia coli

    Get PDF
    A way to decipher the complexity of the cellular metabolism is to study the effect of different external perturbations. Through an analysis over a sufficiently large set of gene knockouts and growing conditions, one aims to find a unifying principle that governs the metabolic regulation. For instance, it is known that the cessation of the microorganism proliferation after a gene deletion is only transient. However, we do not know the guiding principle that determines the partial or complete recovery of the growth rate, the corresponding redistribution of the metabolic fluxes and the possible different phenotypes. In spite of this large variety in the observed metabolic adjustments, we show that responses of E. coli to several different perturbations can always be derived from a sequence of greedy and myopic resilencings. This simple mechanism provides a detailed explanation for the experimental dynamics both at cellular (proliferation rate) and molecular level ((13)C-determined fluxes), also in case of appearance of multiple phenotypes. As additional support, we identified an example of a simple network motif that is capable of implementing this myopic greediness in the regulation of the metabolism

    Inhibition of cerebrovascular raf activation attenuates cerebral blood flow and prevents upregulation of contractile receptors after subarachnoid hemorrhage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH.</p> <p>Results</p> <p>Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ET<sub>B</sub>, 5-HT<sub>1B </sub>and AT<sub>1 </sub>receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score.</p> <p>Conclusion</p> <p>These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.</p

    Protein kinase C inhibition attenuates vascular ET(B )receptor upregulation and decreases brain damage after cerebral ischemia in rat

    Get PDF
    BACKGROUND: Protein kinase C (PKC) is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat. RESULTS: At 24 hours after transient middle cerebral artery occlusion (MCAO), the contractile endothelin B receptor mediated response and the endothelin B receptor protein expression were upregulated in the ipsilateral but not the contralateral middle cerebral artery. In Ro-32-0432 treated rats, the upregulated endothelin receptor response was attenuated. Furthermore, Ro-32-0432 treatment decreased the ischemic brain damage significantly and improved neurological scores. Immunohistochemistry showed fainter staining of endothelin B receptor protein in the smooth muscle cells of the ipsilateral middle cerebral artery of Ro-32-0432 treated rats compared to control. CONCLUSION: The results suggest that treatment with Ro-32-0432 in ischemic stroke decreases the ischemic infarction area, neurological symptoms and associated endothelin B receptor upregulation. This provides a new perspective on possible mechanisms of actions of PKC inhibition in cerebral ischemia

    Reduced Plasmodium vivax Erythrocyte Infection in PNG Duffy-Negative Heterozygotes

    Get PDF
    BACKGROUND: Erythrocyte Duffy blood group negativity reaches fixation in African populations where Plasmodium vivax (Pv) is uncommon. While it is known that Duffy-negative individuals are highly resistant to Pv erythrocyte infection, little is known regarding Pv susceptibility among heterozygous carriers of a Duffy-negative allele (+/−). Our limited knowledge of the selective advantages or disadvantages associated with this genotype constrains our understanding of the effect that interventions against Pv may have on the health of people living in malaria-endemic regions. METHODS AND FINDINGS: We conducted cross-sectional malaria prevalence surveys in Papua New Guinea (PNG), where we have previously identified a new Duffy-negative allele among individuals living in a region endemic for all four human malaria parasite species. We evaluated infection status by conventional blood smear light microscopy and semi-quantitative PCR-based strategies. Analysis of a longitudinal cohort constructed from our surveys showed that Duffy heterozygous (+/−) individuals were protected from Pv erythrocyte infection compared to those homozygous for wild-type alleles (+/+) (log-rank tests: LM, p = 0.049; PCR, p = 0.065). Evaluation of Pv parasitemia, determined by semi-quantitative PCR-based methods, was significantly lower in Duffy +/− vs. +/+ individuals (Mann-Whitney U: p = 0.023). Overall, we observed no association between susceptibility to P. falciparum erythrocyte infection and Duffy genotype. CONCLUSIONS: Our findings provide the first evidence that Duffy-negative heterozygosity reduces erythrocyte susceptibility to Pv infection. As this reduction was not associated with greater susceptibility to Pf malaria, our in vivo observations provide evidence that Pv-targeted control measures can be developed safely

    Transcriptional Analysis of Shewanella oneidensis MR-1 with an Electrode Compared to Fe(III)Citrate or Oxygen as Terminal Electron Acceptor

    Get PDF
    Shewanella oneidensis is a target of extensive research in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially with regard to respiration with extracellular electron acceptors. The physiological activity of S. oneidensis to respire at electrodes is of great interest, but the growth conditions in thin-layer biofilms make physiological analyses experimentally challenging. Here, we took a global approach to evaluate physiological activity with an electrode as terminal electron acceptor for the generation of electric current. We performed expression analysis with DNA microarrays to compare the overall gene expression with an electrode to that with soluble iron(III) or oxygen as the electron acceptor and applied new hierarchical model-based statistics for the differential expression analysis. We confirmed the differential expression of many genes that have previously been reported to be involved in electrode respiration, such as the entire mtr operon. We also formulate hypotheses on other possible gene involvements in electrode respiration, for example, a role of ScyA in inter-protein electron transfer and a regulatory role of the cbb3-type cytochrome c oxidase under anaerobic conditions. Further, we hypothesize that electrode respiration imposes a significant stress on S. oneidensis, resulting in higher energetic costs for electrode respiration than for soluble iron(III) respiration, which fosters a higher metabolic turnover to cover energy needs. Our hypotheses now require experimental verification, but this expression analysis provides a fundamental platform for further studies into the molecular mechanisms of S. oneidensis electron transfer and the physiologically special situation of growth on a poised-potential surface

    HIV-1 gp120 Induces Expression of IL-6 through a Nuclear Factor-Kappa B-Dependent Mechanism: Suppression by gp120 Specific Small Interfering RNA

    Get PDF
    In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders. However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in increased expression of IL-6 at the levels of mRNA and protein by 51.3±2.1 and 11.6±2.2 fold respectively; this effect of gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-κB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKβ inhibitors inhibited IL-6 expression by 56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-κB specific siRNA. We also showed that gp120 could increase the phosphorylation of IκBα. Furthermore, gp120 transfection in the SVGA cells increased translocation of NF-κB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by the NF-κB pathway
    corecore