10 research outputs found

    Powerlaw optical conductivity with a constant phase angle in high Tc superconductors

    Get PDF
    In certain materials with strong electron correlations a quantum phase transition (QPT) at zero temperature can occur, in the proximity of which a quantum critical state of matter has been anticipated. This possibility has recently attracted much attention because the response of such a state of matter is expected to follow universal patterns defined by the quantum mechanical nature of the fluctuations. Forementioned universality manifests itself through power-law behaviours of the response functions. Candidates are found both in heavy fermion systems and in the cuprate high Tc superconductors. Although there are indications for quantum criticality in the cuprate superconductors, the reality and the physical nature of such a QPT are still under debate. Here we identify a universal behaviour of the phase angle of the frequency dependent conductivity that is characteristic of the quantum critical region. We demonstrate that the experimentally measured phase angle agrees precisely with the exponent of the optical conductivity. This points towards a QPT in the cuprates close to optimal doping, although of an unconventional kind.Comment: pdf format, 9 pages, 4 color figures include

    Mechanisms of drug combinations: Interaction and network perspectives

    No full text
    10.1038/nrd2683Nature Reviews Drug Discovery82111-12
    corecore