581 research outputs found

    SPARC functions as an inhibitor of adipogenesis

    Get PDF
    Adipogenesis, a key step in the pathogenesis of obesity, involves extensive ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. Matricellular proteins regulate cell-cell and cell-ECM interactions. Evidence in vivo and in vitro indicates that the prototypic matricellular protein, SPARC, inhibits adipogenesis and promotes osteoblastogenesis. Herein we discuss mechanisms underlying the inhibitory effect of SPARC on adipogenesis. SPARC enhances the Wnt/Ξ²-catenin signaling pathway and regulates the expression and posttranslational modification of collagen. SPARC might drive preadipocytes away from the status of growth arrest and therefore prevent terminal differentiation. SPARC could also decrease WAT deposition through its negative effects on angiogenesis. Therefore, several stages of white adipose tissue accumulation are sensitive to the inhibitory effects of SPARC

    Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype

    Get PDF
    Blood stage malaria parasites causing a mild and self limited infection in mice have been obtained with either radiation or chemical mutagenesis showing the possibility of developing an attenuated malaria vaccine. Targeted disruption of plasmepsin-4 (pm4) or the merozoite surface protein-7 (msp7) genes also induces a virulence-attenuated phenotype in terms of absence of experimental cerebral malaria (ECM), delayed increase of parasitemia and reduced mortality rate. The decrease in virulence in parasites lacking either pm4 or msp7 is however incomplete and dependent on the parasite and mouse strain combination. The sequential disruption of both genes induced remarkable virulence-attenuated blood-stage parasites characterized by a self-resolving infection with low levels of parasitemia and no ECM. Furthermore, convalescent mice were protected against the challenge with P. berghei or P. yoelii parasites for several months. These observations provide a proof-of-concept step for the development of human malaria vaccines based on genetically attenuated blood-stage parasites

    Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While glucocorticoids are currently the most effective therapy for asthma, associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-Ξ³ (PPAR-Ξ³) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to modulate the asthmatic response compares to that of glucocorticoids remains unclear, however, because these two nuclear receptor agonists have never been studied concurrently. Additionally, effects of PPAR-Ξ³ agonists have never been examined in a model involving an allergen commonly associated with human asthma.</p> <p>Methods</p> <p>We compared the effectiveness of the PPAR-Ξ³ agonist pioglitazone (PIO) to the established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was administered throughout the period of airway CRA exposure.</p> <p>Results</p> <p>PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness, pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-Ξ±, TGF-Ξ², RANTES, eotaxin, MIP3-Ξ±, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an adenovirus containing a constitutively active PPAR-Ξ³ expression construct blocked CRA induction of Gob-5 and Muc5-ac.</p> <p>Conclusion</p> <p>Given the potent effectiveness shown by PIO, we conclude that PPAR-Ξ³ agonists deserve investigation as potential therapies for human asthma.</p

    Ephrin-A5 Suppresses Neurotrophin Evoked Neuronal Motility, ERK Activation and Gene Expression

    Get PDF
    During brain development, growth cones respond to attractive and repulsive axon guidance cues. How growth cones integrate guidance instructions is poorly understood. Here, we demonstrate a link between BDNF (brain derived neurotrophic factor), promoting axonal branching and ephrin-A5, mediating axonal repulsion via Eph receptor tyrosine kinase activation. BDNF enhanced growth cone filopodial dynamics and neurite branching of primary neurons. We show that ephrin-A5 antagonized this BDNF-evoked neuronal motility. BDNF increased ERK phosphorylation (P-ERK) and nuclear ERK entry. Ephrin-A5 suppressed BDNF-induced ERK activity and might sequester P-ERK in the cytoplasm. Neurotrophins are well established stimulators of a neuronal immediate early gene (IEG) response. This is confirmed in this study by e.g. c-fos, Egr1 and Arc upregulation upon BDNF application. This BDNF-evoked IEG response required the transcription factor SRF (serum response factor). Notably, ephrin-A5 suppressed a BDNF-evoked neuronal IEG response, suggesting a role of Eph receptors in modulating gene expression. In opposite to IEGs, long-term ephrin-A5 application induced cytoskeletal gene expression of tropomyosin and actinin. To uncover specific Eph receptors mediating ephrin-As impact on neurotrophin signaling, EphA7 deficient mice were analyzed. In EphA7 deficient neurons alterations in growth cone morphology were observed. However, ephrin-A5 still counteracted neurotrophin signaling suggesting that EphA7 is not required for ephrin and BDNF crosstalk. In sum, our data suggest an interaction of ephrin-As and neurotrophin signaling pathways converging at ERK signaling and nuclear gene activity. As ephrins are involved in development and function of many organs, such modulation of receptor tyrosine kinase signaling and gene expression by Ephs might not be limited to the nervous system

    Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach

    Get PDF
    This study presents the role of reaction temperature in the formation and growth of silver nanoparticles through a synergetic reduction approach using two or three reducing agents simultaneously. By this approach, the shape-/size-controlled silver nanoparticles (plates and spheres) can be generated under mild conditions. It was found that the reaction temperature could play a key role in particle growth and shape/size control, especially for silver nanoplates. These nanoplates could exhibit an intensive surface plasmon resonance in the wavelength range of 700–1,400 nm in the UV–vis spectrum depending upon their shapes and sizes, which make them useful for optical applications, such as optical probes, ionic sensing, and biochemical sensors. A detailed analysis conducted in this study clearly shows that the reaction temperature can greatly influence reaction rate, and hence the particle characteristics. The findings would be useful for optimization of experimental parameters for shape-controlled synthesis of other metallic nanoparticles (e.g., Au, Cu, Pt, and Pd) with desirable functional properties

    Multicenter Phase 2 Trial of Sirolimus for Tuberous Sclerosis: Kidney Angiomyolipomas and Other Tumors Regress and VEGF- D Levels Decrease

    Get PDF
    Tuberous sclerosis (TSC) related tumors are characterized by constitutively activated mTOR signaling due to mutations in TSC1 or TSC2.We completed a phase 2 multicenter trial to evaluate the efficacy and tolerability of the mTOR inhibitor, sirolimus, for the treatment of kidney angiomyolipomas.36 adults with TSC or TSC/LAM were enrolled and started on daily sirolimus. The overall response rate was 44.4% (95% confidence intervals [CI] 28 to 61); 16/36 had a partial response. The remainder had stable disease (47.2%, 17/36), or were unevaluable (8.3%, 3/36). The mean decrease in kidney tumor size (sum of the longest diameters [sum LD]) was 29.9% (95% CI, 22 to 37; nβ€Š=β€Š28 at week 52). Drug related grade 1-2 toxicities that occurred with a frequency of >20% included: stomatitis, hypertriglyceridemia, hypercholesterolemia, bone marrow suppression (anemia, mild neutropenia, leucopenia), proteinuria, and joint pain. There were three drug related grade 3 events: lymphopenia, headache, weight gain. Kidney angiomyolipomas regrew when sirolimus was discontinued but responses tended to persist if treatment was continued after week 52. We observed regression of brain tumors (SEGAs) in 7/11 cases (26% mean decrease in diameter), regression of liver angiomyolipomas in 4/5 cases (32.1% mean decrease in longest diameter), subjective improvement in facial angiofibromas in 57%, and stable lung function in women with TSC/LAM (nβ€Š=β€Š15). A correlative biomarker study showed that serum VEGF-D levels are elevated at baseline, decrease with sirolimus treatment, and correlate with kidney angiomyolipoma size (Spearman correlation coefficient 0.54, pβ€Š=β€Š0.001, at baseline).Sirolimus treatment for 52 weeks induced regression of kidney angiomyolipomas, SEGAs, and liver angiomyolipomas. Serum VEGF-D may be a useful biomarker for monitoring kidney angiomyolipoma size. Future studies are needed to determine benefits and risks of longer duration treatment in adults and children with TSC.Clinicaltrials.gov NCT00126672

    SPARC Overexpression Inhibits Cell Proliferation in Neuroblastoma and Is Partly Mediated by Tumor Suppressor Protein PTEN and AKT

    Get PDF
    Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell–cell and cell–matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo
    • …
    corecore