52 research outputs found

    Objective effect manifestation of pectus excavatum on load-stressed pulmonary function testing: a case report

    Get PDF
    Abstract Introduction Pectus excavatum is the most common congenital deformity of the anterior chest wall that, under certain conditions, may pose functional problems due to cardiopulmonary compromise and exercise intolerance. Case presentation We present the case of an otherwise physically-adept 21-year-old Chinese sportsman with idiopathic pectus excavatum, whose symptoms manifested only on bearing a loaded body vest and backpack during physical exercise. Corroborative objective evidence was obtained via load-stressed pulmonary function testing, which demonstrated restrictive lung function. Conclusion This report highlights the possible detrimental synergism of thoracic load stress and pectus excavatum on cardiopulmonary function. Thoracic load-stressed pulmonary function testing provides objective evidence in support of such a synergistic relationship.</p

    The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials

    Get PDF
    Much hypoxia research has been carried out at high altitude in a hypobaric hypoxia (HH) environment. Many research teams seek to replicate high-altitude conditions at lower altitudes in either hypobaric hypoxic conditions or normobaric hypoxic (NH) laboratories. Implicit in this approach is the assumption that the only relevant condition that differs between these settings is the partial pressure of oxygen (PO2), which is commonly presumed to be the principal physiological stimulus to adaptation at high altitude. This systematic review is the first to present an overview of the current available literature regarding crossover studies relating to the different effects of HH and NH on human physiology. After applying our inclusion and exclusion criteria, 13 studies were deemed eligible for inclusion. Several studies reported a number of variables (e.g. minute ventilation and NO levels) that were different between the two conditions, lending support to the notion that true physiological difference is indeed present. However, the presence of confounding factors such as time spent in hypoxia, temperature, and humidity, and the limited statistical power due to small sample sizes, limit the conclusions that can be drawn from these findings. Standardisation of the study methods and reporting may aid interpretation of future studies and thereby improve the quality of data in this area. This is important to improve the quality of data that is used for improving the understanding of hypoxia tolerance, both at altitude and in the clinical setting

    The impact of submaximal exercise during heat and/or hypoxia on the cardiovascular and monocyte HSP72 responses to subsequent (post 24 h) exercise in hypoxia

    Get PDF
    BACKGROUND: The aims of this study were to describe the cellular stress response to prolonged endurance exercise in acute heat, hypoxia and the combination of heat and hypoxia and to determine whether prior acute exposure to these stressors improved cellular tolerance to a subsequent exercise bout in hypoxia 24 h later. METHODS: Twelve males (age 22 ± 4 years, height 1.77 ± 0.05 m, mass 79 ± 12.9 kg, VO(2) max 3.57 ± 0.7 L · min(-1)) completed four trials (30-min rest, 90-min cycling at 50% normoxic VO(2) max) in normothermic normoxia (NORM; 18°C, F(I)O(2) = 0.21), heat (HEAT; 40°C, 20% RH), hypoxia (HYP; F(I)O(2) = 0.14) or a combination of heat and hypoxia (COM; 40°C, 20% RH, F(I)O(2) = 0.14) separated by at least 7 days. Twenty-four hours after each trial, participants completed a hypoxic stress test (HST; 15-min rest, 60-min cycling at 50% normoxic VO(2) max, F(I)O(2) = 0.14). Monocyte heat shock protein 72 (mHSP72) was assessed immediately before and after each exercise bout. RESULTS: mHSP72 increased post exercise in NORM (107% ± 5.5%, p > 0.05), HYP (126% ± 16%, p < 0.01), HEAT (153% ± 14%, p < 0.01) and COM (161% ± 32%, p < 0.01). mHSP72 had returned to near-resting values 24 h after NORM (97% ± 8.6%) but was elevated after HEAT (130% ± 19%), HYP (118% ± 17%) and COM (131% ± 19%) (p < 0.05). mHSP72 increased from baseline after HST(NORM) (118% ± 12%, p < 0.05), but did not increase further in HST(HEAT), HST(HYP) and HST(COM). CONCLUSIONS: The prior induction of mHSP72 as a result of COM, HEAT and HYP attenuated further mHSP72 induction after HST and was indicative of conferred cellular tolerance

    The 2018 Lake Louise Acute Mountain Sickness Score.

    Get PDF
    Roach, Robert C., Peter H. Hackett, Oswald Oelz, Peter Bärtsch, Andrew M. Luks, Martin J. MacInnis, J. Kenneth Baillie, and The Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol 19:1-4, 2018.- The Lake Louise Acute Mountain Sickness (AMS) scoring system has been a useful research tool since first published in 1991. Recent studies have shown that disturbed sleep at altitude, one of the five symptoms scored for AMS, is more likely due to altitude hypoxia per se, and is not closely related to AMS. To address this issue, and also to evaluate the Lake Louise AMS score in light of decades of experience, experts in high altitude research undertook to revise the score. We here present an international consensus statement resulting from online discussions and meetings at the International Society of Mountain Medicine World Congress in Bolzano, Italy, in May 2014 and at the International Hypoxia Symposium in Lake Louise, Canada, in February 2015. The consensus group has revised the score to eliminate disturbed sleep as a questionnaire item, and has updated instructions for use of the score
    corecore