155 research outputs found

    FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death.

    Get PDF
    Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT

    Incidence and predictors of onboard injuries among Sri Lankan flight attendants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Occupational injuries among flight attendants have not been given appropriate attention in Sri Lanka. The purpose of this study was to estimate the incidence of onboard injury among Sri Lankan flight attendants and to describe the determinants of onboard injury.</p> <p>Methods</p> <p>A descriptive cross-sectional study was carried out among Sri Lankan flight attendants. All flight attendants undergoing their annual health and first aid training were invited to participate. Flight attendants who flew continuously for a six-month period prior to data collection were included in the study sample. Recall history of injuries for a period of six months was recorded.</p> <p>Results</p> <p>The study sample consisted of 98 (30.4%) male and 224 (69.6%) female flight attendants. The mean age of the study sample was 31 years (SD = 8) and the average duration of service was 10 years (SD = 7). A total of 100 onboard falls, slips or trips in the previous six months were reported by 52 (16.1%) respondents. Of the total sample, 128 (39.8%) cabin crew members reported an injury in the six months preceding the study. This represents a total injury incidence of 795 per 1000 person per year. The leading causes of injury was pulling, pushing or lifting (60.2%). The commonest type of injuries were strains and sprains (52.3%). Turbulence related injuries were reported by 38 (29.7%) flight attendants. The upper limbs (44.5%) and the back (32%) were the commonest sites affected. After controlling for other factors, female flight attendants had 2.9 times higher risk (95% CI 1.2–7.2) of sustaining and injury than males. Irrespective of sex, body weight less than 56 kilograms (OR 2.9, 95% CI 1.4–5.8) and less than seven years of on board experience (OR 10.5, 95% CI 3.6–31.0) were associated with higher risk of injury.</p> <p>Conclusion</p> <p>Work related injury is a major occupational hazard to flight attendants. Appropriate preventive strategies are required to minimize them.</p

    Unique establishment of procephalic head segments is supported by the identification of cis-regulatory elements driving segment-specific segment polarity gene expression in Drosophila

    Get PDF
    Anterior head segmentation is governed by different regulatory mechanisms than those that control trunk segmentation in Drosophila. For segment polarity genes, both initial mode of activation as well as cross-regulatory interactions among them differ from the typical genetic circuitry in the trunk and are unique for each of the procephalic segments. In order to better understand the segment-specific gene network responsible for the procephalic expression of the earliest active segment polarity genes wingless and hedgehog, we started to identify and analyze cis-regulatory DNA elements of these genes. For hedgehog, we could identify a cis-regulatory element, ic-CRE, that mediates expression specifically in the posterior part of the intercalary segment and requires promoter-specific interaction for its function. The intercalary stripe is the last part of the metameric hedgehog expression pattern that appears during embryonic development, which probably reflects the late and distinct establishment of this segment. The identification of a cis-regulatory element that is specific for one head segment supports the mutant-based observation that the expression of segment polarity genes is governed by a unique gene network in each of the procephalic segments. This provides further indication that the anterior-most head segments represent primary segments, which are set up independently, in contrast to the secondary segments of the trunk, which resemble true repetitive units

    The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity

    Get PDF
    Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required for the developmental function of this protein. Biochemical analysis identified UTX-1 as a component of a complex that includes SET-16(MLL), and genetic analysis indicates that the defects associated with loss of UTX-1 are likely mediated by compromised SET-16/UTX-1 complex activity. Taken together, these results demonstrate that UTX-1 is required for many aspects of nematode development; but, unexpectedly, this function is independent of its enzymatic activity

    Slow GABAA mediated synaptic transmission in rat visual cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABA<sub>A </sub>receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABA<sub>A </sub>responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABA<sub>A </sub>receptor mediated inhibitory postsynaptic currents (IPSCs). These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABA<sub>A </sub>IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex.</p> <p>Results</p> <p>GABA<sub>A </sub>slow IPSCs were significantly different from fast responses with respect to rise times and decay time constants, but not amplitudes. Spontaneously occurring GABA<sub>A </sub>slow IPSCs were nearly 100 times less frequent than fast sIPSCs and both were completely abolished by the chloride channel blocker, picrotoxin. The GABA<sub>A </sub>subunit-specific antagonist, furosemide, depressed spontaneous and evoked GABA<sub>A </sub>fast IPSCs, but not slow GABA<sub>A</sub>-mediated IPSCs. Anatomical specificity was evident using minimal stimulation: IPSCs with slow kinetics were evoked predominantly through stimulation of layer 1/2 apical dendritic zones of layer 4 pyramidal neurons and across their basal dendrites, while GABA<sub>A </sub>fast IPSCs were evoked through stimulation throughout the dendritic arborization. Many evoked IPSCs were also composed of a combination of fast and slow IPSC components.</p> <p>Conclusion</p> <p>GABA<sub>A </sub>slow IPSCs displayed durations that were approximately 4 fold longer than typical GABA<sub>A </sub>fast IPSCs, but shorter than GABA<sub>B</sub>-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABA<sub>A </sub>slow IPSCs into computational models of cortical function will help improve our understanding of cortical information processing.</p

    Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons

    Get PDF
    The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management

    A comparison of specialist rehabilitation and care assistant support with specialist rehabilitation alone and usual care for people with Parkinson's living in the community: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's Disease is a degenerative neurological condition that causes movement problems and other distressing symptoms. People with Parkinson's disease gradually lose their independence and strain is placed on family members. A multidisciplinary approach to rehabilitation for people with Parkinson's is recommended but has not been widely researched. Studies are needed that investigate cost-effective community-based service delivery models to reduce disability and dependency and admission to long term care, and improve quality of life.</p> <p>Methods</p> <p>A pragmatic three parallel group randomised controlled trial involving people with Parkinson's Disease and live-in carers (family friends or paid carers), and comparing: management by a specialist multidisciplinary team for six weeks, according to a care plan agreed between the professionals and the patient and carer (Group A); multidisciplinary team management and additional support for four months from a trained care assistant (Group B); usual care, no coordinated team care planning or ongoing support (Group C). Follow up will be for six months to determine the impact and relative cost-effectiveness of the two interventions, compared to usual care. The primary outcomes are disability (patients) and strain (carers). Secondary outcomes include patient mobility, falls, speech, pain, self efficacy, health and social care use; carer general health; patient and carer social functioning, psychological wellbeing, health related quality of life. Semi structured interviews will be undertaken with providers (team members, care assistants), service commissioners, and patients and carers in groups A and B, to gain feedback about the acceptability of the interventions. A cost - effectiveness evaluation is embedded in the trial.</p> <p>Discussion</p> <p>The trial investigates components of recent national policy recommendations for people with long term conditions, and Parkinson's Disease in particular, and will provide guidance to inform local service planning and commissioning.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN44577970">ISRCTN44577970</a></p

    Genetic dissection of the relationships between grain yield components by genome-wide association mapping in a collection of tetraploid wheats

    Get PDF
    Increasing grain yield potential in wheat has been a major target of most breeding programs. Genetic advance has been frequently hindered by negative correlations among yield components that have been often observed in segregant populations and germplasm collections. A tetraploid wheat collection was evaluated in seven environments and genotyped with a 90K SNP assay to identify major and stable quantitative trait loci (QTL) for grain yield per spike (GYS), kernel number per spike (KNS) and thousand-kernel weight (TKW), and to analyse the genetic relationships between the yield components at QTL level. The genome-wide association analysis detected eight, eleven and ten QTL for KNS, TKW and GYS, respectively, significant in at least three environments or two environments and the mean across environments. Most of the QTL for TKW and KNS were found located in different marker intervals, indicating that they are genetically controlled independently by each other. Out of eight KNS QTL, three were associated to significant increases of GYS, while the increased grain number of five additional QTL was completely or partially compensated by decreases in grain weight, thus producing no or reduced effects on GYS. Similarly, four consistent and five suggestive TKW QTL resulted in visible increase of GYS, while seven additional QTL were associated to reduced effects in grain number and no effects on GYS. Our results showed that QTL analysis for detecting TKW or KNS alleles useful for improving grain yield potential should consider the pleiotropic effects of the QTL or the association to other QTLs
    corecore