62 research outputs found

    Identification of Candidate Genes Downstream of TLR4 Signaling after Ozone Exposure in Mice: A Role for Heat-Shock Protein 70

    Get PDF
    Background: Toll-like receptor 4 (TLR4) is involved in ozone (O3)-induced pulmonary hyperpermeability and inflammation, although the downstream signaling events are unknown

    Quantitative trait analysis of the development of pulmonary tolerance to inhaled zinc oxide in mice

    Get PDF
    BACKGROUND: Individuals may develop tolerance to the induction of adverse pulmonary effects following repeated exposures to inhaled toxicants. Previously, we demonstrated that genetic background plays an important role in the development of pulmonary tolerance to inhaled zinc oxide (ZnO) in inbred mouse strains, as assessed by polymorphonuclear leukocytes (PMNs), macrophages, and total protein in bronchoalveolar lavage (BAL) phenotypes. The BALB/cByJ (CBy) and DBA/2J (D2) strains were identified as tolerant and non-tolerant, respectively. The present study was designed to identify candidate genes that control the development of pulmonary tolerance to inhaled ZnO. METHODS: Genome-wide linkage analyses were performed on a CByD2F2 mouse cohort phenotyped for BAL protein, PMNs, and macrophages following 5 consecutive days of exposure to 1.0 mg/m(3 )inhaled ZnO for 3 hours/day. A haplotype analysis was carried out to determine the contribution of each quantitative trait locus (QTL) and QTL combination to the overall BAL protein phenotype. Candidate genes were identified within each QTL interval using the positional candidate gene approach. RESULTS: A significant quantitative trait locus (QTL) on chromosome 1, as well as suggestive QTLs on chromosomes 4 and 5, for the BAL protein phenotype, was established. Suggestive QTLs for the BAL PMN and macrophage phenotypes were also identified on chromosomes 1 and 5, respectively. Analysis of specific haplotypes supports the combined effect of three QTLs in the overall protein phenotype. Toll-like receptor 5 (Tlr5) was identified as an interesting candidate gene within the significant QTL for BAL protein on chromosome 1. Wild-derived Tlr5-mutant MOLF/Ei mice were tolerant to BAL protein following repeated ZnO exposure. CONCLUSION: Genetic background is an important influence in the acquisition of pulmonary tolerance to BAL protein, PMNs, and macrophages following ZnO exposure. Promising candidate genes exist within the identified QTL intervals that would be good targets for additional studies, including Tlr5. The implications of tolerance to health risks in humans are numerous, and this study furthers the understanding of gene-environment interactions that are likely to be important factors from person-to-person in regulating the development of pulmonary tolerance to inhaled toxicants

    The role of ALOX5AP, LTA4H and LTB4R polymorphisms in determining baseline lung function and COPD susceptibility in UK smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown evidence that polymorphisms within genes controlling leukotriene B<sub>4 </sub>(LTB<sub>4</sub>) production (<it>ALOX5AP </it>and <it>LTA4H</it>) are associated with asthma susceptibility in children. Evidence also suggests a potential role of LTB<sub>4 </sub>in COPD disease mechanisms including recruitment of neutrophils to the lung. The aim of the current study was to see if these SNPs and those spanning the receptor genes for LTB<sub>4 </sub>(<it>LTB4R1 </it>and <it>LTB4R2</it>) influence baseline lung function and COPD susceptibility/severity in smokers.</p> <p>Methods</p> <p>Eight <it>ALOX5AP</it>, six <it>LTA4H </it>and six <it>LTB4R </it>single nucleotide polymorphisms (SNPs) were genotyped in a UK Smoking Cohort (n = 992). Association with baseline lung function (FEV<sub>1 </sub>and FEV<sub>1</sub>/FVC ratio) was determined by linear regression. Logistic regression was used to compare smoking controls (n = 176) with spirometry-defined COPD cases (n = 599) and to more severe COPD cases (GOLD stage 3 and 4, n = 389).</p> <p>Results</p> <p>No association with <it>ALOX5AP</it>, <it>LTA4H </it>or <it>LTB4R </it>survived correction for multiple testing. However, we showed modest association with <it>LTA4H </it>rs1978331C (intron 11) with increased FEV<sub>1 </sub>(p = 0.029) and with increased FEV<sub>1</sub>/FVC ratio (p = 0.020).</p> <p>Conclusions</p> <p>These data suggest that polymorphisms spanning <it>ALOX5AP</it>, <it>LTA4H </it>and the <it>LTB4R </it>locus are not major determinants of baseline lung function in smokers, but provide tentative evidence for <it>LTA4H </it>rs1978331C (intron 11) in determining baseline FEV<sub>1 </sub>and FEV<sub>1</sub>/FVC ratio in Caucasian Smokers in addition to our previously identified role in asthma susceptibility.</p

    Interpreting Meta-Analyses of Genome-Wide Association Studies

    Get PDF
    Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect

    Assessing the Performance of a Computer-Based Policy Model of HIV and AIDS

    Get PDF
    BACKGROUND. Model-based analyses, conducted within a decision analytic framework, provide a systematic way to combine information about the natural history of disease and effectiveness of clinical management strategies with demographic and epidemiological characteristics of the population. Among the challenges with disease-specific modeling include the need to identify influential assumptions and to assess the face validity and internal consistency of the model. METHODS AND FINDINGS. We describe a series of exercises involved in adapting a computer-based simulation model of HIV disease to the Women's Interagency HIV Study (WIHS) cohort and assess model performance as we re-parameterized the model to address policy questions in the U.S. relevant to HIV-infected women using data from the WIHS. Empiric calibration targets included 24-month survival curves stratified by treatment status and CD4 cell count. The most influential assumptions in untreated women included chronic HIV-associated mortality following an opportunistic infection, and in treated women, the 'clinical effectiveness' of HAART and the ability of HAART to prevent HIV complications independent of virologic suppression. Good-fitting parameter sets required reductions in the clinical effectiveness of 1st and 2nd line HAART and improvements in 3rd and 4th line regimens. Projected rates of treatment regimen switching using the calibrated cohort-specific model closely approximated independent analyses published using data from the WIHS. CONCLUSIONS. The model demonstrated good internal consistency and face validity, and supported cohort heterogeneities that have been reported in the literature. Iterative assessment of model performance can provide information about the relative influence of uncertain assumptions and provide insight into heterogeneities within and between cohorts. Description of calibration exercises can enhance the transparency of disease-specific models.National Institute of Allergy and Infectious Diseases (R37 AI042006, K24 AI062476

    Tumor necrosis factor receptor 2 contributes to ozone-induced airway hyperresponsiveness in mice

    Get PDF
    The purpose of this study was to determine whether tumor necrosis factor (TNF) contributes to airway hyperresponsiveness (AHR) and migration of polymorphonuclear leukocytes (PMN) into the airways following exposure to ozone (03). Wild-type mice, TNF p55 or p75 receptor knockout mice (p55 TNFR -/- and p75 TNFR -/-), as well as double receptor knockout mice (p55/p75 TNFR -/-), were exposed to O3. Three hours after cessation of O3, airway responses to inhaled methacholine were determined by whole body plethysmography using changes in enhanced pause (Penh) as an index of airway narrowing. In wild-type mice, O3 exposure (0.5 ppm, 3 h) caused a significant increase in airway responsiveness as indicated by a 1.2 log leftward shift in the methacholine dose-response curve. In contrast, in p55/p75 TNFR -/- mice, O3 caused only a 0.5 log shift in the dose-response curve (p &lt; 0.05 compared with wild-type). Similar results were obtained in p75 TNFR -/mice. In contrast, O3-induced airway hyperresponsiveness was not different in WT and p55 TNFR -/- mice. During O3 exposure (1 pm, 3 h), minute ventilation (V̇e) decreased by 64 ± 4% in wild-type, but only 24 ± 5% in p55/p75 TNFR -/- mice, indicating that despite their reduced O3-induced AHR, the TNFR-deficient mice actually inhaled a greater dose of O3. Similar results were obtained in p75 -/- mice, whereas changes in V̇e induced by O3 were the same in wild-type and p55 -/- mice. PMN numbers in bronchoalveolar lavage fluid recovered 21 h after cessation of exposure to O3 (2 ppm, 3 h) were significantly increased compared with after air exposure but were not different in wild-type and p55/p75 TNFR -/- mice. Our results indicate that TNF contributes to the AHR but not the PMN emigration induced by acute O3 exposure

    Evaluation of genetic susceptibility to childhood allergy and asthma in an African American urban population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify high risk groups are variable and replication of genetic associations in African Americans is warranted.</p> <p>Methods</p> <p>We evaluated 41 single nucleotide polymorphisms (SNP) and a deletion corresponding to 11 genes demonstrating association with asthma in the literature, for association with asthma, atopy, testing positive for food allergens, eosinophilia, and total serum IgE among 141 African American children living in Detroit, Michigan. Independent SNP and haplotype associations were investigated for association with each trait, and subsequently assessed in concert using a genetic risk score (GRS).</p> <p>Results</p> <p>Statistically significant associations with asthma were observed for SNPs in <it>GSTM1, MS4A2</it>, and <it>GSTP1 </it>genes, after correction for multiple testing. Chromosome 11 haplotype CTACGAGGCC (corresponding to <it>MS4A2 </it>rs574700, rs1441586, rs556917, rs502581, rs502419 and <it>GSTP1 </it>rs6591256, rs17593068, rs1695, rs1871042, rs947895) was associated with a nearly five-fold increase in the odds of asthma (Odds Ratio (OR) = 4.8, <it>p </it>= 0.007). The GRS was significantly associated with a higher odds of asthma (OR = 1.61, 95% Confidence Interval = 1.21, 2.13; <it>p </it>= 0.001).</p> <p>Conclusions</p> <p>Variation in genes associated with asthma in predominantly non-African ethnic groups contributed to increased odds of asthma in this African American study population. Evaluating all significant variants in concert helped to identify the highest risk subset of this group.</p

    Genetics of asthma: a molecular biologist perspective

    Get PDF
    Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis
    corecore