9,720 research outputs found
The impact of COVID-19 control measures on air quality in China
The outbreak of Coronavirus Disease 2019 (COVID-19) in China in January 2020 prompted substantial control measures including social distancing measures, suspension of public transport and industry, and widespread cordon sanitaires ('lockdowns'), that have led to a decrease in industrial activity and air pollution emissions over a prolonged period. We use a 5 year dataset from China's air quality monitoring network to assess the impact of control measures on air pollution. Pollutant concentration time series are decomposed to account for the inter-annual trend, seasonal cycles and the effect of Lunar New Year, which coincided with the COVID-19 outbreak. Over 2015–2019, there were significant negative trends in particulate matter (PM2.5, −6% yr−1) and sulphur dioxide (SO2, −12% yr−1) and nitrogen dioxide (NO2, −2.2% yr−1) whereas there were positive trends in ozone (O3, + 2.8% yr−1). We quantify the change in air quality during the LNY holiday week, during which pollutant concentrations increase on LNY's day, followed by reduced concentrations in the rest of the week. After accounting for interannual trends and LNY we find NO2 and PM concentrations were significantly lower during the lockdown period than would be expected, but there were no significant impacts on O3. Largest reductions occurred in NO2, with concentrations 27.0% lower on average across China, during the lockdown. Average concentrations of PM2.5 and PM10 across China were respectively 10.5% and 21.4% lower during the lockdown period. The largest reductions were in Hubei province, where NO2 concentrations were 50.5% lower than expected during the lockdown. Concentrations of affected pollutants returned to expected levels during April, after control measures were relaxed
Exploring perceptions of common practices immediately following burn injuries in rural communities of Bangladesh
© 2018 The Author(s). Background: Burns can be the most devastating injuries in the world, they constitute a global public health problem and cause widespread public health concern. Every year in Bangladesh more than 365,000 people are injured by electrical, thermal and other causes of burn injuries. Among them 27,000 need hospital admission and over 5600 people die. Immediate treatment and medication has been found to be significant in the success of recovering from a burn. However, common practices used in the treatment of burn injuries in the community is not well documented in Bangladesh. This study was designed to explore the perception of local communities in Bangladesh the common practices used and health-seeking behaviors sought immediately after a burn injury has occurred. Methods: A qualitative study was conducted using Focus Group Discussions (FGD) as the data collection method. Six unions of three districts in rural Bangladesh were randomly selected and FGDs were conducted in these districts with six burn survivors and their relatives and neighbours. Data were analyzed manually, codes were identified and the grouped into themes. Results: The participants stated that burn injuries are common during the winter in Bangladesh. Inhabitants in the rural areas said that it was common practice, and correct, to apply the following to the injured area immediately after a burn: egg albumin, salty water, toothpaste, kerosene, coconut oil, cow dung or soil. Some also believed that applying water is harmful to a burn injury. Most participants did not know about any referral system for burn patients. They expressed their dissatisfaction about the lack of available health service facilities at the recommended health care centers at both the district level and above. Conclusions: In rural Bangladesh, the current first-aid practices for burn injuries are incorrect; there is a widely held belief that using water on burns is harmful
Suppression of field-induced spin density wave order in Sr_{3}Ru_{2}O_{7} with pressure
Measuring the resistivity of high-purity single crystals of Sr_{3}Ru_{2}O_{7} under pressure, we find strong evidence that the field-induced spin density wave phase at the H ∥ c metamagnetic transition is suppressed at a surprisingly low pressure of ∼ 3 ± 1 kbar. This offers the possibility of studying a bare quasi-two-dimensional spin density wave quantum critical point, testing the T → 0 K limit of theories of Planckian dissipation and quantum criticality. Preliminary attempts to fit ρ(T) with a quantum critical spin fluctuation model, while encouraging, reveal a need for further, complementary measurements
Chemical profiles and simultaneous quantification of Aurantii fructus by use of HPLC-Q-TOF-MS combined with GC-MS and HPLC methods
Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract. There were 104 compounds belonging to eight structure types, including 13 amino acids or peptides, seven alkaloids, 18 flavanones, 14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and 18 volatile oils, as well as four other compounds that were systematically identified as the basic components from AF, and among them, 41 compounds were reported for the first time. Twelve bioactive ingredients were chosen as the benchmark markers to evaluate the quality of AF. The analysis was completed with a gradient elution at a flow rate of 0.7 mL/min within 55 min. This efficient method was validated showing good linearity, precision, stability, repeatability and recovery. Furthermore, the method was successfully applied to the simultaneous determination of 12 chemical markers in different samples of AF. This study could be applied to the identification of multiple bioactive substances and improve the quality control of AF
Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit.
The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.Medical Research Council (MRC); Biotechnology and Biological Sciences Research Council (BBSRC); European Union; Academy of Finland (to H.M.C.). Funding for open access charge: MRC
Displacements analysis of self-excited vibrations in turning
The actual research deals with determining by a new protocol the necessary
parameters considering a three-dimensional model to simulate in a realistic way
the turning process on machine tool. This paper is dedicated to the
experimental displacements analysis of the block tool / block workpiece with
self-excited vibrations. In connexion with turning process, the self-excited
vibrations domain is obtained starting from spectra of two accelerometers. The
existence of a displacements plane attached to the tool edge point is revealed.
This plane proves to be inclined compared to the machines tool axes. We
establish that the tool tip point describes an ellipse. This ellipse is very
small and can be considered as a small straight line segment for the stable
cutting process (without vibrations). In unstable mode (with vibrations) the
ellipse of displacements is really more visible. A difference in phase occurs
between the tool tip displacements on the radial direction and on the cutting
one. The feed motion direction and the cutting one are almost in phase. The
values of the long and small ellipse axes (and their ratio) shows that these
sizes are increasing with the feed rate value. The axis that goes through the
stiffness center and the tool tip represents the maximum stiffness direction.
The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the
large (resp. small) ellipse displacements axis. FFT analysis of the
accelerometers signals allows to reach several important parameters and
establish coherent correlations between tool tip displacements and the static -
elastic characteristics of the machine tool components tested
A Hybrid Higgs
We construct composite Higgs models admitting a weakly coupled Seiberg dual
description. We focus on the possibility that only the up-type Higgs is an
elementary field, while the down-type Higgs arises as a composite hadron. The
model, based on a confining SQCD theory, breaks supersymmetry and electroweak
symmetry dynamically and calculably. This simultaneously solves the \mu/B_\mu
problem and explains the smallness of the bottom and tau masses compared to the
top mass. The proposal is then applied to a class of models where the same
confining dynamics is used to generate the Standard Model flavor hierarchy by
quark and lepton compositeness. This provides a unified framework for flavor,
supersymmetry breaking and electroweak physics. The weakly coupled dual is used
to explicitly compute the MSSM parameters in terms of a few microscopic
couplings, giving interesting relations between the electroweak and soft
parameters. The RG evolution down to the TeV scale is obtained and salient
phenomenological predictions of this class of "single-sector" models are
discussed.Comment: 56 pages, 7 figures, v2: discussion on FCNCs and references added,
v3: JHEP versio
- …