25 research outputs found

    A brief history of CarbFix: Challenges and victories of the project’s pilot phase

    Get PDF
    The pilot phase of the CarbFix project ran for over a decade and consisted of the training of students, creating the scientific basis for the fixation of carbon dioxide in the subsurface through the in-situ carbonation of basalts, and the demonstration of this technology by fixing approximately 200 tons of injected CO2 as carbonate minerals during 2012 and 2013. Over the course of this effort numerous parts of this project have been reported in scientific articles, but a number of challenges including that of separating CO2 gas from a H2S-rich effluent gas, the clogging of the original CarbFix injection well and the damage to the project’s gas pipe by a third party that eventually shut down the project’s pilot phase, have yet to be detailed in the scientific literature. This brief manuscript reviews the CarbFix timeline over the past 12 years, describing in detail some of these challenges. CarbFix demonstrates how interdisciplinary collaboration between the green energy industry, academia, engineers and technicians allows for a fast and efficient development of the idea of battling climate change by permanently petrifying otherwise emitted CO2 in subsurface basalt formations into an economic industrial scale process useful to the global economy

    Evaluation and refinement of thermodynamic databases for mineral carbonation

    Get PDF
    Thermodynamic models are often used to quantify fluid-rock interactions. The validity of such models critically depends on the accuracy of the thermodynamic database used. This study evaluated the quality of existing PHREEQC databases (phreeqc.dat, llnl.dat, and core10.dat) through the analysis of mineral saturation states for various carbonates, sulfur-containing minerals, silicates, and hydroxides. The comparison between data from available equilibrated dissolution-precipitation experiments and predicted saturation states reveals: i) systematic deviations when using phreeqc.dat at temperatures higher than ~ 90 °C; ii) a lack of direct solubility measurements of numerous sulfide and silicate minerals; iii) systematic solubility underestimates for kaolinite and brucite. To address these issues the carbfix.dat database was created based on the core10.dat database, revising several mineral solubilities and aqueous species stabilities to improve our ability to model fluid-rock interactions during basalt-hosted mineral carbonation efforts

    The chemistry and potential reactivity of the CO 2 -H 2 S charged injected waters at the basaltic CarbFix2 site, Iceland

    Get PDF
    The CarbFix2 project aims to capture and store the CO2 and H2S emissions from the Hellisheiði geothermal power plant in Iceland by underground mineral storage. The gas mixture is captured directly by its dissolution into water at elevated pressure. This fluid is then injected, along with effluent geothermal water, into subsurface basalts to mineralize the dissolved acid gases as carbonates and sulfides. Sampled effluent and gas-charged injection waters were analyzed and their mixing geochemically modeled using PHREEQC. Results suggest that carbonates, sulfides, and other secondary minerals would only precipitate after it has substantially reacted with the host basalt. Moreover, the fluid is undersaturated with respect to the most common primary and secondary minerals at the injection well outlet, suggesting that the risk of clogging fluid flow paths near the injection well is limited

    Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland

    Get PDF
    The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 µm). At least 7·1010 kg (70 Tg) was very fine ash (<28 µm), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe

    Links Between Hydrothermal Environments, Pyrophosphate, Na+, and Early Evolution

    Get PDF
    The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H+-pump, and like the Na+-pumping ATPase, it can be a Na+-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na+ transport preceded ATP and H+ transport in association with geochemistry of the Earth at the time of the origin and early evolution of life. Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. A hydrothermal environment in which Na+ is abundant exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth. The forearc pore fluids have a pH up to 12.6, a Na+-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates. A key to PPi formation in these geological environments is a low local activity of water

    CarbFix2: CO₂ and H₂S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C

    No full text
    The CarbFix method was upscaled at the Hellisheiði geothermal power plant to inject and mineralize the plant’s CO₂ and H₂S emissions in June 2014. This approach first captures the gases by their dissolution in water, and the resulting gas-charged water is injected into subsurface basalts. The dissolved CO₂ and H₂S then react with the basaltic rocks liberating divalent cations, Ca^{2+}, Mg^{2+}, Fe^{2+}, increasing the fluid pH, and precipitating stable carbonate and sulfide minerals. By the end of 2017, 23,200 metric tons of CO₂ and 11,800 metric tons of H₂S had been injected to a depth of 750 m into fractured, hydrothermally altered basalts at >250 °C. The in situ fluid composition, as well as saturation indices and predominance diagrams of relevant secondary minerals at the injection and monitoring wells, indicate that sulfide precipitation is not limited by the availability of Fe or by the consumption of Fe by other secondary minerals; Ca release from the reservoir rocks to the fluid phase, however, is potentially the limiting factor for calcite precipitation, although dolomite and thus aqueous Mg may also play a role in the mineralization of the injected carbon. During the first phase of the CarbFix2 injection (June 2014 to July 2016) over 50% of injected carbon and 76% of sulfur mineralized within four to nine months, but these percentages increased four months after the amount of injected gas was doubled during the second phase of CarbFix2 (July 2016 – December 2017) at over 60% of carbon and over 85% of sulfur. The doubling of the gas injection rate decreased the pH of the injection water liberating more cations for gas mineralization. Notably, the injectivity of the injection well has remained stable throughout the study period confirming that the host rock permeability has been essentially unaffected by 3.5 years of mineralization reactions. Lastly, although the mineralization reactions are accelerated by the high temperatures (>250 °C), this is the upper temperature limit for carbon storage via the mineral carbonation of basalts as higher temperatures leads to potential decarbonation reactions

    The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site

    No full text
    One of the main challenges of worldwide carbon capture and storage (CCS) efforts is its cost. As much as 90% of this cost stems from the capture of pure or nearly pure CO2 from exhaust streams. This cost can be lowered by capturing gas mixtures rather than pure CO2. Here we present a novel integrated carbon capture and storage technology, installed at the CarbFix2 storage site at Hellisheiði, Iceland that lowers considerably the cost and energy required at this site. The CarbFix2 site, located in deeper and hotter rocks than the original CarbFix site, permits the continuous injection of larger quantities of CO2 and H2S than the original site. The integrated process consists of soluble gas mixture capture in water followed by the direct injection of the resulting CO2-H2S-charged water into basaltic rock, where much of the dissolved carbon and sulfur are mineralized within months. This integrated method provides the safe, long-term storage of carbon dioxide and other acid gases at a cost of US $25/ton of the gas mixture at the CarbFix2 site and might provide the technology for lower CCS cost at other sites

    Water-rock interactions: An investigation of the relationships between mineralogy and groundwater composition and flow in a subtropical basalt aquifer

    No full text
    A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement
    corecore