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Abstract 

Thermodynamic models are often used to quantify fluid-rock interactions. The validity of such models critically depends on the 

accuracy of the thermodynamic database used. This study evaluated the quality of existing PHREEQC databases (phreeqc.dat, 

llnl.dat, and core10.dat) through the analysis of mineral saturation states for various carbonates, sulfur-containing minerals, 

silicates, and hydroxides. The comparison between data from available equilibrated dissolution-precipitation experiments and 

predicted saturation states reveals: i) systematic deviations when using phreeqc.dat at temperatures higher than ~ 90 °C; ii) a lack 

of direct solubility measurements of numerous sulfide and silicate minerals; iii) systematic solubility underestimates for kaolinite 

and brucite. To address these issues the carbfix.dat database was created based on the core10.dat database, revising several mineral 

solubilities and aqueous species stabilities to improve our ability to model fluid-rock interactions during basalt-hosted mineral 

carbonation efforts. 
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1. Introduction 

Geochemical modelling is widely used to quantify chemical reactions occurring between fluids and solid phases 

over a wide range of temperatures and pressures in the Earth. For example, carbon storage efforts in basalt rely on 
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CO2-water-basalt interactions to fix CO2 as stable carbonate minerals [1,2]. To better understand such processes 

thermodynamic models are often used, however the quality of model results depends critically on the quality of the 

chosen thermodynamic database [3]. Over the past decades a number of thermodynamic databases have been created 

and compiled for different geochemical modelling codes such as EQ3/6 [4], WATCH [5], SUPCRT92 [6], PHREEQC 

[7], Geochemist’s Workbench [8], Visual MINTEQ [9], TOUGHREACT [10,11], CHNOSZ [12], and GEMS [13,14]. 

This has enabled predictions of mineral solubility and aqueous solute speciation in an assortment of geochemical 

systems. Nevertheless, it is an essential step to evaluate the databases as new and/or improved thermodynamic data 

are continuously published. Given this, Gysi and Stefansson [15] and Aradóttir et al. [16] evaluated and compiled 

thermodynamic datasets of pertinent minerals for CO2 mineral sequestration in basalts. Aradóttir et al. [16] created a 

new database in the TOUGHREACT format based on the EQ3/6 database and SUPCRT92, while Gysi and Stefansson 

[15] based their work on the phreeqc.dat database in PHREEQC. 

In this study, this effort is revisited by focusing on mineral saturation states. Mineral saturation states are key 

parameters in geochemical studies and indicate how far a solution is from thermodynamic equilibrium with respect to 

a certain mineral. The saturation state is defined as Ω ≡ 𝑄/𝐾SP, where KSP is the equilibrium constant of the mineral 

dissolution reaction, and Q is the corresponding reaction quotient of this reaction, calculated from the activities of all 

species involved in the dissolution reaction. At equilibrium, 𝑄 = 𝐾SP so that Ω = 1. The saturation index, defined as 

SI ≡ log10 Ω, is used in many cases instead of Ω (e.g. in PHREEQC), so that at equilibrium SI = 0. A saturation index 

greater than zero indicates that an aqueous solution is supersaturated with a specific mineral, and SI < 0 indicates that 

the aqueous solution is undersaturated with respect to the mineral. The interpretation of saturation states and indices 

can be complicated by various factors; for example, a positive SI does not necessarily imply that the mineral will 

precipitate from the solution, as the slow precipitation kinetics may inhibit the precipitation, or favor precipitation of 

another mineral. Nevertheless, these parameters have proven to be useful indicators of equilibrium or disequilibrium 

in natural environments. 

To evaluate the quality of predicted mineral saturation states, we calculated the saturation indices for sets of 

laboratory experiments in which thermodynamic equilibration between aqueous solutions and one or more minerals 

was likely achieved, and analyzed the accuracy, precision, as well as systematic deviations of predicted SI from zero. 

The PHREEQC software package, version 3 [7], was used together with different popular databases to carry out these 

thermodynamic calculations. Furthermore, a new database, carbfix.dat, was created, modifying and extending existing 

databases. 

2. Thermodynamic databases used for evaluations 

Several thermodynamic databases are available for PHREEQC, for which the standard state for solid phases and 

H2O is the pure phase, while a hypothetical 1 mol/kg aqueous solution referenced to infinite dilution is chosen for unit 

activity of aqueous species, both at the temperature and pressure of interest. 

The default PHREEQC database phreeqc.dat is derived from PHREEQE [17] and contains thermodynamic data 

for aqueous species and minerals relevant to natural fluid-rock interactions. Most equilibrium constants (K or log K) 

in this database are extrapolated to temperatures other than 25 °C assuming that the enthalpy of reaction (∆𝑟𝐻) does 

not vary with temperature (i.e. using the Van ‘t Hoff equation). Changes in ∆𝑟𝐻 are negligible for small temperature 

changes, but not so for larger temperature changes, so that calculations using phreeqc.dat become less reliable with 

increasing temperature. 

The llnl.dat database for PHREEQC contains the vast amount of thermodynamic data compiled at the Lawrence 

Livermore National Laboratory for the thermo.com.V8.R6.230 database of Geochemist’s Workbench [7]. Many of the 

equilibrium constants in this database were calculated from thermodynamic properties of minerals and aqueous 

species using the SUPCRT92 software package [6]. For aqueous species, revised Helgeson-Kirkham-Flowers (HKF) 

equations [18,19] are used together with parameters regressed by a number of authors [e.g. 18,20–22] using a large 

set of experimental data that was available at that time. Similarly, mineral data are described by equations given in 

[23] and regressed data based on numerous experimental data. The resulting equilibrium constants are parameterized 

as a function of temperature in the llnl.dat database, allowing calculations over a larger temperature range compared 

to phreeqc.dat. 
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The core10.dat database is based on llnl.dat, but contains several modifications and improvements [24]. This 

database was developed with the application to icy world interiors in mind, but is applicable to other geochemical 

settings as well due to its similarity to llnl.dat. Importantly, it corrects several erroneous data, only contains data for 

which analytical expressions for equilibrium constants were available (as opposed to assumptions of constant ∆𝑟𝐻° 

or constant K), and only contains phases and species for which molar volumes were available, allowing PHREEQC 

to estimate the pressure dependence of equilibrium constants. 

2.1. The CarbFix database for PHREEQC 

In this study, a new thermodynamic database for PHREEQC, carbfix.dat, was created based on the existing 

core10.dat database [24]. Compared to core10.dat, it contains additional mineral solubilites and aqueous species 

stability constants. Furthermore, selected mineral solubilites were revised based on the results of the evaluations 

presented below, and a typographical error was corrected in the former database (the second parameter of the analytical 

expression for the solubility product of saponite-Fe-Fe should read ‘-1.630e-1’ instead of ‘-1.630-1’). 

Minerals added into carbfix.dat include 18 zeolite group minerals, whose thermodynamic properties were taken 

from Neuhoff [25]. The equilibrium constants for the dissolution reactions of these minerals were calculated using 

thermodynamic data for aqueous species taken from the OBIGT and SUPCRTBL thermodynamic databases together 

with the CHNOSZ package for the software R [12,26]. As these databases and the software package are based on 

SUPCRT92, these newly added mineral solubilites are expected to be internally consistent with the other data in 

core10.dat. The equilibrium constants calculated by CHNOSZ were fit to the analytical expression form of PHREEQC 

using the standard non-linear regression techniques in Wolfram Mathematica, and molar volumes were taken directly 

from Neuhoff [25]. Furthermore, the thermodynamic properties of ferro-actinolite and ankerite were taken from 

Holland and Powell [27] and integrated into the database using the same procedure. The solubilites of dolomite and 

siderite were re-calibrated using experimental data as explained in section 3. 

Several metal-carbonate aqueous complexes were added to or revised in carbfix.dat. The parameters used to 

calculate the specific volumes of these species with a Redlich-type equation were taken from the OBIGT and 

SUPCRTBL databases. The equilibrium constant for formation of CaHCO3
+ was taken from llnl.dat, for NaCO3

- and 

NaHCO3 from Stefánsson et al. [28], for MgCO3 and MgHCO3
+ from Stefánsson et al. [29], and for NaSO4

- from 

McCollum and Shock [30] using CHNOSZ. Furthermore, the equilibrium constant for the formation of Al(OH)2
+ was 

added from llnl.dat and the stability of the AlH3SiO4
2+ complex was parameterized using data of Pokrovski et al. [31]. 

Using CHNOSZ, stabilities and specific volumes of AlSO4
+ and NaAl(OH)4

 [32], Fe(OH)2
+, Fe(OH)3, Fe(OH)4

-, 

Fe(OH)2, Fe(OH)3
-, HClO, HClO2, HS2O3, and KOH [33] were added to the database as well. 

The resulting latest version of the carbfix.dat database is available at GitHub at the address 

https://github.com/CarbFix/carbfix.dat where the version described in this article can be accessed from release v1.0.0, 

or alternatively at http://carbfix.com. 

3. Evaluation of predicted saturation indices 

Mineral saturation indices (SI) were calculated using the databases described above for aqueous solutions used in 

laboratory experiments during which equilibration between the fluid and one or more minerals was approached. 

Calculations were carried out using the originally reported fluid compositions (such as pH, total aqueous 

concentrations of elements or species, temperature, etc.) to avoid dependence of the results on other thermodynamic 

data. 

All experimental studies used for these evaluations were originally performed to determine mineral solubilites. 

However, as the achievement of thermodynamic equilibrium cannot be proven for these experimental studies, 

disequilibrium would lead to deviations of calculated SI from zero. Most studies aimed to achieve equilibrium from 

under- as well as supersaturation by carrying out both dissolution and precipitation experiments. This approach limits 

systematic errors in calculated solubilites and helps to estimate the uncertainties in experimentally determined 

parameters. If equilibration is attained only from one direction, the distance from equilibrium is difficult to estimate, 

as mineral-fluid reactions might proceed at rates significantly slower than changes observable over reasonable 

timespans and experimental and analytical uncertainties. Errors in the thermodynamic data or models represent further 

https://github.com/CarbFix/carbfix.dat
http://carbfix.com/
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potential uncertainties. Errors in solubilities (KSP) directly affect calculated SI and thus represent a prime source for 

errors, but many calculations also depend on other equilibrium constants (e.g., of reactions between different aqueous 

species). Oversimplifications in the thermodynamic model, such as the approximation of activity coefficients or the 

assumption of a temperature-invariant ∆𝑟𝐻 (like in the case of many reactions in phreeqc.dat) may also lead to 

significant systematic errors, as illustrated below. Finally, experimental and analytical uncertainties lead to (mostly 

random) variability in calculated SI. 

Except for disequilibrium, all potential reasons mentioned above for deviations of SI from zero equally apply when 

SI are calculated in geochemical studies. If errors due to disequilibrium in the employed experimental studies are 

small compared to the other sources of errors (i.e. errors in the thermodynamic database or model, and analytical 

uncertainties), the deviation from zero and the variability of the calculated SI for these experimental studies indicate 

the magnitude the uncertainty in calculated SI. Therefore, we calculated the mean saturation index (SI̅) and the 

standard deviation (σ) for all experimental datasets as measures for the accuracy and precision of calculated SI, 

respectively. It should be noted however that some of the experimental datasets used for the evaluations only cover a 

limited range of temperature, outside of which larger uncertainties may occur as thermodynamic data is often less well 

constrained at increasing temperatures. Furthermore, most natural systems are chemically more complex than 

laboratory experiments, which likely leads to larger uncertainties when predicting SI for such systems. Therefore, the 

uncertainties estimated here should be regarded as minimum estimates of the uncertainties that must be anticipated 

for modelled SI. 

3.1. Carbonate minerals 

Due to the importance of carbonate minerals for carbon mineral storage, the quality of SI calculated for the minerals 

calcite, aragonite, dolomite, magnesite, siderite, and dawsonite was evaluated. From the results (Table 1, Fig. 1), it 

can be seen that SI̅Calcite deviate by less than 0.097 from zero for all databases at < 90 °C, indicating a high level of 

accuracy of calculated SI. Standard deviations are equally low (≤ 0.061) in all cases, suggesting that SICalcite can be 

predicted with a high level of accuracy and precision in simple, low-temperature fluids. Similarly, the mean SI 

calculated for aragonite solubility experiments of temperatures up to 90 °C are small (≤ 0.075). Note however, that 

these aragonite solubility experiments [34,35] were conducted in pure water, so that larger uncertainties are likely for 

more complex solutions. SI calculated for the high temperature calcite solubility experiments of [36] show larger 

deviations from zero, but standard deviations remain below 0.169 except for phreeqc.dat, for which SI are 

systematically negative. Similarly, deviations of SIDolomite and SISiderite from zero are largest using phreeqc.dat, where 

SI are close to zero at up to 90 °C but become increasingly negative with higher temperatures as shown with siderite 

in Fig. 2. This behavior can be explained by use of the assumption of constant ∆𝑟𝐻 for many reactions in phreeqc.dat, 

as explained in section 2. SI calculated using lllnl.dat and core10.dat for these two minerals, as well as for magnesite 

and dawsonite, are much closer to zero (Table 1, Fig. 1). However, SI̅̅ for siderite is approximately -0.5, indicating a 

systematic deviation from zero, and σ for dolomite is relatively large (0.67). Therefore, the parameters for the 

analytical expressions of the solubilities as a function of temperature were re-calibrated for these two minerals in 

carbfix.dat using the same experimental datasets used for the evaluations [37,38]. The log KSP were fit to the same 

form of expressions used in these original studies, resulting in 

logKSP
Dolomite  = 29.3854 – 

6474.23

T
 – 0.08464 T    (1) 

logKSP
Siderite  = 349.432 – 

13573.8

T
 – 0.0362811 T – 131.651 log

10
T   (2) 

where T is temperature in Kelvin for the dissolution reactions 

CaMg(CO3)2 ⇌ Ca2++ Mg2++ 2 CO3
2-    (R1) 

FeCO3 ⇌ Fe2+ + CO3
2-    (R2) 
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respectively. It can be seen from Table 1 and Fig. 1 that the SI predicted for these two minerals using carbfix.dat are 

an improvement over the other databases, which can be largely attributed to these re-calibrated solubility expressions. 

While the SI for dawsonite and magnesite also slightly deviate from zero using core10.dat, no re-calibration was 

necessary as several aqueous species were added to carbfix.dat (see section 2.1), improving the SI predicted using the 

latter database for these two minerals. 

 

Table 1. Experimental studies of mineral solubilities used to in the present study to assess the quality of thermodynamic saturation index calculations 

using PHREEQC and different databases. The type refers to dissolution (D) and precipitation (P) experiments and N is the number of equilibrated 

aqueous solutions available in each study. SI̅̅ and σ refer to the sample mean and standard deviation of the saturation indices calculated for the 

experimental solutions using the different databases, respectively. 

Mineral Formula Ref. N Type T / °C pH phreeqc.dat llnl.dat core10.dat carbfix.dat 

SI̅ σ SI̅ σ SI̅ σ SI̅ σ 

Carbonates 

Calcite CaCO3 [34] 40 D/P 5-50 ~ 6 -0.007 0.017 0.020 0.023 0.064 0.017 0.020 0.022 

  [35] 141 D/P 0.1-90 ~ 6 -0.003 0.045 0.017 0.061 0.097 0.051 0.019 0.061 

  [36] 46 D 120-290 5-6 -0.411 0.605 0.170a 0.169a 0.277 0.179 -0.122 0.118 

Aragonite CaCO3 [35] 205 D/P 0.7-90 6-8 0.001 0.001 0.022 0.029 0.075 0.040 0.023 0.029 

Dolomite CaMg(CO3)2 [37] 28 D/P 50-250 5-7 -3.337 2.359 -0.047 0.660 -0.030 0.666 -0.004 0.317 

Magnesite MgCO3 [39] 25 D/P 50-200 5-8 - - 0.078 0.298 0.112 0.310 0.074 0.305 

Siderite FeCO3 [38] 21 D/P 50-250 5-6 -1.469 1.450 -0.484 0.332 -0.512 0.343 -0.005 0.310 

Dawsonite NaAlCO3(OH)2 [40] 30 D/P 50-200 4-10 - - 0.238 0.484 0.350 0.441 -0.025 0.431 

Sulfur-bearing minerals 

Anhydrite CaSO4 [41] 103 D 70-300 ~ 7 0.100 0.268 0.541 0.399 0.388 0.372 0.377 0.357 

  [42] 54 D 100-260 ~ 7 -0.034 0.089 0.414 0.273 0.116 0.104 0.116 0.104 

  [43] 11 D 65 ~ 7 -0.190 0.090 -0.355 0.160 0.080 0.103 -0.383 0.161 

Pyrrhotite FeS [44] 1 D 25-60 4 - - -1.215 - -1.220 - -1.220 - 

Mackinawite FeS [44] 6 D/P 25 3-4 -0.058 0.459 - - - - - - 

FeS FeS [44] 4 P 25 3-4 0.383 0.173 - - - - - - 

Silicates 

Quartz SiO2 [45] 6 D 136-240 7 -0.009 0.016 0.068 0.049 0.066 0.047 0.066 0.047 

  [46] 10 D 21-96 7 0.149 0.066 0.128 0.108 0.128 0.108 0.128 0.108 

Am. SiO2 SiO2 [47] 20 D/P 8-300 7 -0.015 0.041 0.002 0.061 -0.002 0.062 -0.002 0.062 

Kaolinite Al2Si2O5(OH)4 [48] 16 D/P 25 ~ 4 0.190 0.100 0.889 0.101 0.900 0.101 0.881 0.100 

  [49] 7 D/P 80 ~ 3 0.515 0.226 1.443 0.217 1.451 0.216 1.301 0.208 

Analcime NaAlSi2O6·H2O  [50] 60 D/P 25-300 7-10 - - 0.173 0.416 0.165 0.425 0.017 0.489 

Hydroxides 

Gibbsite Al(OH)3 [51] 10 D/P 25 4-6 0.050 0.079 0.510 0.114 0.599 0.166 0.510 0.114 

  [52] 180 D 50 3-9 -0.643 0.260 0.020 0.207 0.044 0.167 -0.017 0.209 

Boehmite AlOOH [53] 496 D/P 100-290 2-10 - - -0.261 0.978 -0.324 1.181 -0.356 1.215 

Brucite Mg(OH)2 [54] 13 D 22 9-11 - - 0.693 0.058 0.693 0.058 0.693 0.058 

aAqueous solution densities necessary for the calculation of SI for the experimental data were calculated using core10.dat, as llnl.dat does not 

allow the calculation of densities. 
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Fig. 1. Plot of the distributions of saturation indices (SI) calculated for aqueous solutions of studies that experimentally determined mineral 

solubilities. Thermodynamic SI calculations were carried out with PHREEQC using different databases shown in different colors as defined in the 

upper left-hand plot. The plotted distributions correspond to smoothed histograms, i.e. kernel density estimations of the probability density function. 

 

 

 

 
Fig. 2. Plots of saturation indices (SI) calculated for aqueous solutions of experimentally determined the solubilites of siderite (left) and boehmite 

(right) as a function of temperature. Thermodynamic SI calculations were carried out with PHREEQC using different databases shown in different 

colors as defined in the left-hand plot. 
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3.2. Sulfur-bearing minerals 

A large number of experimental solubility experiments are available for the Ca-sulfate anhydrite (see Table 1). 

Mean SI calculated for data from the three experimental studies deviate from zero by less than 0.38, and standard 

deviations are smaller than 0.4, suggesting a reasonable accuracy and precision of the calculations over the temperature 

range 65-300 °C for simple aqueous solutions. Among the four tested databases, phreeqc.dat gives the best results 

and llnl.dat shows the largest variability. 

On the other hand, the sulfide minerals are severely under-represented within the PHREEQC suite of databases 

due to the difficulties associated with the direct measurement of their solubility because of: i) their sluggish dissolution 

kinetics, which often prevents attainment of equilibrium at low temperatures; ii) the requirement of low redox 

potentials, which poses challenges to experimental and analytical techniques; iii) the potential release of toxic H2S 

gas, which requires special experimental facilities; and iv) the electron configuration of some iron sulfide minerals 

such as pyrite which prevents solubility measurements at ambient temperatures [55]. Nevertheless, we calculated SI 

for pyrrhotite, mackinawite, and ferrous sulfide using experimental data of Berner [44] (Table 1). The single pyrrhotite 

experiment suggests an overestimation of its solubility in all three databases containing data for this mineral (llnl.dat, 

core10.dat, carbfix.dat), whereas data in phreeqc.dat for mackinawite and ferrous sulfide are in good agreement with 

the experimental data. However, no conclusive statement can be made about the accuracy and precision of the mineral 

solubilities of the sulfide minerals in any of these databases due to the lack of direct solubility measurements. These 

equilibrium constants are ultimately derived from indirect measurements (e.g., calorimetric measurements of the 

mineral properties). 

3.3. Silicate minerals 

Saturation states calculated for solubility experiments of quartz and amorphous SiO2 are close to zero for all 

databases even at high temperatures (Table 1, Fig. 1), indicating a high degree of reliability of these SI, which can be 

explained by the relatively simple aqueous speciation of Si. The temperature dependence of the solubilities of these 

two minerals are widely used as geothermometers to calculate equilibration temperatures of natural fluids [45–47]. 

Thus, differences between such calculated equilibrium temperatures and measured experimental temperatures indicate 

minimum uncertainties that are to be expected from geothermometric calculations of natural fluids (assuming similar 

speciation and analytical uncertainties). Using carbfix.dat, we calculated the best-fit equilibrium temperatures (i.e. 

assuming SI=0) from the measured experimental SiO2 concentrations within the temperature range of 8-300 °C; on 

average, they deviate from the measured experimental temperatures by 3 °C, with a standard deviation of 11 °C. 

Direct solubility measurements of more complex silicate minerals are very limited, which is mainly due to 1) the 

sluggish dissolution/precipitation kinetics of many silicate minerals at low temperatures and 2) complications caused 

by synthesis and solid-solution formation, especially for sheet silicates like clays. Nevertheless, some experimental 

solubility measurements are available for kaolinite and analcime. For the former mineral, SI calculated from the 

experimental data of May et al. [48] and Nagy et al. [49] are close to zero for phreeqc.dat (Table 1, Fig. 1), whereas 

calculations with the other three databases are offset from zero by ~ 0.9 on average. However, it is unclear whether 

this difference is due to an incorrect solubility product (KSP) or due to erroneous stability constants for aqueous 

alumina species, so that this solubility constant was not changed in carbfix.dat. It should be noted that all experiments 

were carried out at 25 to 80 °C, and that phreeqc.dat only contains a constant ∆𝑟𝐻  for the kaolinite dissolution 

reaction, so that calculated saturation indices are likely to show systematic errors at higher temperatures. Measured 

solubilities of analcime [50] at temperatures of up to 300 °C are reproduced relatively accurately by the three databases 

containing data for this mineral, as signified by the SI̅̅ close to zero (≤ 0.173, Table 1). However, the standard 

deviations are higher (~ 0.4), indicating that care must be taken when interpreting such saturation indices. 

3.4. Hydroxide minerals 

In general, aluminum hydroxide minerals are of great interest as Al is a major component in many natural rocks 

that interact with fluids, such as in geothermal reservoirs. Direct solubility measurements have been carried out for 

gibbsite and boehmite [51–53], and SI̅ calculated for these data range from ~ 0.1 to 0.6 (Table 1, Fig. 1), while standard 
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deviations are of similar magnitude (gibbsite) or slightly larger (boehmite). For the latter mineral, the errors of 

calculated SI significantly increase above 250 °C as shown in Fig. 2, which is likely caused by the increased errors in 

extrapolated aqueous speciation constants in thermodynamic databases. 

The solubility of brucite is of importance because of its similarity to more complex clay minerals for which direct 

measurements are complicated by the complex chemistry and solid solutions [56], in addition to its use as backfill 

material in nuclear waste storage sites [54]. Brucite solubilites measured at room temperature [54] are systematically 

higher (~ 0.7 in SI) than indicated by llnl.dat, core10.dat, and carbfix.dat (all containing the same constant), but show 

a lower standard deviation. This implies, similar to silicate minerals, that uncertainties in saturation state calculations 

for these minerals must be considered. No correction of solubility products was attempted for these phases, as it is 

unclear whether errors are caused by aqueous complex stability constants or the solubility products themselves. 

4. Conclusions 

Saturation indices were calculated for aqueous solutions that directly determined the solubility of various minerals. 

Calculations were carried out with PHREEQC using its different thermodynamic databases to assess the quality of 

such predictions. The results reveal varying degrees of deviation of the predicted saturation indices from zero, which 

may be caused by errors in the thermodynamic database or model, analytical and experimental uncertainties, or 

departures from equilibrium in the experiments. While the phreeqc.dat database reproduces low-temperature data 

relatively well, systematic errors appear at higher temperatures for many minerals due to the assumption of a constant 

enthalpy of reaction (∆𝑟𝐻). For carbonate minerals, the fit is best for calcite and aragonite, while dolomite, magnesite, 

siderite and dawsonite SI deviate from zero by approximately up to 1 to 2. A similar degree of variability can be seen 

for anhydrite, analcime, and the alumina hydroxide minerals gibbsite and boehmite. Experimentally determined quartz 

and amorphous silica solubilities are reproduced well by all databases, and geothermometric (equilibrium) 

temperatures calculated from the same data deviate from measured experimental temperatures by 3 °C on average, 

with a standard deviation of 11 °C. Systematic underestimation of solubilities by approximately one SI are seen for 

kaolinite and brucite. A new database for PHREEQC, carbfix.dat, was created based on the core10.dat database of 

Neveu et al. [24], adding several additional mineral solubilites and aqueous species stabilities relevant for fluid-rock 

interactions in basalt-hosted carbon sequestration efforts, as well as improving several equilibrium constants based on 

available data. 

In general, the variability of calculated SI and their deviance from zero indicate that care must be taken when 

interpreting thermodynamically calculated SI for natural fluids. The variability shown in this study should be regarded 

as a minimum estimate of uncertainty, as fluid compositions are commonly much more complex in natural systems, 

so that errors in the stabilities of aqueous species stabilities are amplified. Furthermore, the experimental data used 

for our quality assessments do not span the full range of temperature and pressure that occur in natural systems. 

Therefore, larger errors likely prevail under such conditions since many thermodynamic constants are extrapolated 

over a wide range of conditions [3]. Moreover, for many of the more complex minerals (especially sheet silicates such 

as clays, and zeolites), no direct solubility measurements are available; consequently, solubilites in thermodynamic 

databases are calculated indirectly from thermodynamic properties of the minerals and aqueous species, potentially 

introducing large errors that are difficult to estimate. This highlights the need for further experimental studies directly 

measuring the solubilites of such minerals over a wide range of conditions (temperature, pressure, composition) along 

with the evaluation of solid solution properties. Finally, the creation of a fully internally consistent thermodynamic 

database for a large set of minerals and aqueous species, including uncertainties of parameters evaluated using 

statistical methods during the regression process, is yet to be achieved. Although such a database is available for 

petrological purposes [27], its applicability to low- to medium-temperature fluids of complex composition is currently 

limited due to the lack of many aqueous species in the database. 
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