2,835 research outputs found

    Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction

    Get PDF
    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide

    Assessment of 1183 screen-detected, category 3B, circumscribed masses by cytology and core biopsy with long-term follow up data

    Get PDF
    Discrete masses are commonly detected during mammographic screening and most such lesions are benign. For lesions without pathognomonically benign imaging features that are still regarded likely to be non-malignant (Tabar grade 3) reliable biopsy results would be a clinically useful alternative to mammographic surveillance. Appropriate institutional guidelines for ethical research were followed. Between Jan 1996–Dec 2005 grade 3B discrete masses detected in the setting of a large, population based, breast cancer screening programme are included. Patient demographics, fine needle aspiration biopsy (FNAB), core and surgical biopsy results are tabulated. The final pathology of excised lesions was obtained. Information regarding interval cancers was obtained from the State Cancer Registry records and also through long term follow-up of clients in subsequent rounds of screening. A total of 1183 lesions, mean diameter of 13.3 mm (±8.3 mm) and mean client age of 55.1 years (±8.8 years) are included. After diagnostic work up, 98 lesions (8.3%) were malignant, 1083 were non-malignant and a final histologic diagnosis was not established in two lesions. In the 27 months after assessment, no interval cancers were attributable to these lesions and during a mean follow up of 54.5 months, available in 84.9% of eligible women, only one cancer has developed in the same quadrant as the original lesion, although the two processes are believed to be unrelated. FNAB performed in 1149 cases was definitive in 80.5% cases (882 benign, 43 malignant) with a negative predictive value (NPV) of 99.8% (880 of 882) and a positive predictive value (PPV) of 95.2% (40 of 42, both intraductal papillomas). Core biopsy was performed in 178 lesions, mostly for indefinite cytology. Core biopsy was definitive in 79.8% cases (57% benign 22% malignant) with a PPV of 100% and NPV of 99.0%. In experienced hands FNAB is an accurate first line diagnostic modality for the assessment of 3B screen-detected discrete masses, providing definitive results in 80.5% of cases. When used as a second line modality, core biopsy had a similarly high rate of definitive diagnosis at 79.8%. The stepwise approach to the use of FNAB and core biopsy would reduce substantially the proportion of cases requiring surgical diagnostic biopsy. Given the low probability of malignancy and the imperative to limit the morbidity associated with cancer screening, the demonstration of the reliability of FNAB as a minimally invasive but highly accurate test for this particular subset of screen-detected lesions has significant clinical utility

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    A statistical toolbox for metagenomics: assessing functional diversity in microbial communities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 99% of bacteria in the environment that are recalcitrant to culturing have spurred the development of metagenomics, a culture-independent approach to sample and characterize microbial genomes. Massive datasets of metagenomic sequences have been accumulated, but analysis of these sequences has focused primarily on the descriptive comparison of the relative abundance of proteins that belong to specific functional categories. More robust statistical methods are needed to make inferences from metagenomic data. In this study, we developed and applied a suite of tools to describe and compare the richness, membership, and structure of microbial communities using peptide fragment sequences extracted from metagenomic sequence data.</p> <p>Results</p> <p>Application of these tools to acid mine drainage, soil, and whale fall metagenomic sequence collections revealed groups of peptide fragments with a relatively high abundance and no known function. When combined with analysis of 16S rRNA gene fragments from the same communities these tools enabled us to demonstrate that although there was no overlap in the types of 16S rRNA gene sequence observed, there was a core collection of operational protein families that was shared among the three environments.</p> <p>Conclusion</p> <p>The results of comparisons between the three habitats were surprising considering the relatively low overlap of membership and the distinctively different characteristics of the three habitats. These tools will facilitate the use of metagenomics to pursue statistically sound genome-based ecological analyses.</p

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses

    Get PDF
    Neutrinoless double beta (0νββ0\nu\beta\beta) decay can in general produce electrons of either chirality, in contrast with the minimal Standard Model (SM) extension with only the addition of the Weinberg operator, which predicts two left-handed electrons in the final state. We classify the lepton number violating (LNV) effective operators with two leptons of either chirality but no quarks, ordered according to the magnitude of their contribution to \znbb decay. We point out that, for each of the three chirality assignments, eLeL,eLeRe_Le_L, e_Le_R and eReRe_Re_R, there is only one LNV operator of the corresponding type to lowest order, and these have dimensions 5, 7 and 9, respectively. Neutrino masses are always induced by these extra operators but can be delayed to one or two loops, depending on the number of RH leptons entering in the operator. Then, the comparison of the 0νββ0\nu\beta\beta decay rate and neutrino masses should indicate the effective scenario at work, which confronted with the LHC searches should also eventually decide on the specific model elected by nature. We also list the SM additions generating these operators upon integration of the heavy modes, and discuss simple realistic examples of renormalizable theories for each case.Comment: Accepted for publication. Few misprints corrected and new references adde
    corecore