2,857 research outputs found

    Laminar dynamics of high amplitude beta bursts in human motor cortex

    Get PDF
    Motor cortical activity in the beta frequency range is one of the strongest and most studied movement-related neural signals. At the single trial level, beta band activity is often characterized by transient, high amplitude, bursting events rather than slowly modulating oscillations. The timing of these bursting events is tightly linked to behavior, suggesting a more dynamic functional role for beta activity than previously believed. However, the neural mechanisms underlying beta bursts in sensorimotor circuits are poorly understood. To address this, we here leverage and extend recent developments in high precision MEG for temporally resolved laminar analysis of burst activity, combined with a neocortical circuit model that simulates the biophysical generators of the electrical currents which drive beta bursts. This approach pinpoints the generation of beta bursts in human motor cortex to distinct excitatory synaptic inputs to deep and superficial cortical layers, which drive current flow in opposite directions. These laminar dynamics of beta bursts in motor cortex align with prior invasive animal recordings within the somatosensory cortex, and suggest a conserved mechanism for somatosensory and motor cortical beta bursts. More generally, we demonstrate the ability for uncovering the laminar dynamics of event-related neural signals in human non-invasive recordings. This provides important constraints to theories about the functional role of burst activity for movement control in health and disease, and crucial links between macro-scale phenomena measured in humans and micro-circuit activity recorded from animal models

    The transition from medical student to junior doctor: today's experiences of Tomorrow's Doctors.

    Get PDF
    CONTEXT Medical education in the UK has recently undergone radical reform. Tomorrow's Doctors has prescribed undergraduate curriculum change and the Foundation Programme has overhauled postgraduate education. OBJECTIVES This study explored the experiences of junior doctors during their first year of clinical practice. In particular, the study sought to gain an understanding of how junior doctors experienced the transition from the role of student to that of practising doctor and how well their medical school education had prepared them for this. METHODS The study used qualitative methods comprising of semi-structured interviews and audio diary recordings with newly qualified doctors based at the Peninsula Foundation School in the UK. Purposive sampling was used and 31 of 186 newly qualified doctors self-selected from five hospital sites. All 31 participants were interviewed once and 17 were interviewed twice during the year. Ten of the participants also kept audio diaries. Interview and audio diary data were transcribed verbatim and thematically analysed with the aid of a qualitative data analysis software package. RESULTS The findings show that, despite recent curriculum reforms, most participants still found the transition stressful. Dealing with their newly gained responsibility, managing uncertainty, working in multi-professional teams, experiencing the sudden death of patients and feeling unsupported were important themes. However, the stress of transition was reduced by the level of clinical experience gained in the undergraduate years. CONCLUSIONS Medical schools need to ensure that students are provided with early exposure to clinical environments which allow for continuing 'meaningful' contact with patients and increasing opportunities to 'act up' to the role of junior doctor, even as students. Patient safety guidelines present a major challenge to achieving this, although with adequate supervision the two aims are not mutually exclusive. Further support and supervision should be made available to junior doctors in situations where they are dealing with the death of a patient and on surgical placements

    Preliminary Limits on the WIMP-Nucleon Cross Section from the Cryogenic Dark Matter Search (CDMS)

    Get PDF
    We are conducting an experiment to search for WIMPs, or weakly-interacting massive particles, in the galactic halo using terrestrial detectors. This generic class of hypothetical particles, whose properties are similar to those predicted by extensions of the standard model of particle physics, could comprise the cold component of non-baryonic dark matter. We describe our experiment, which is based on cooled germanium and silicon detectors in a shielded low-background cryostat. The detectors achieve a high degree of background rejection through the simultaneous measurement of the energy in phonons and ionization. Using exposures on the order of one kilogram-day from initial runs of our experiment, we have achieved (preliminary) upper limits on the WIMP-nucleon cross section that are comparable to much longer runs of other experiments.Comment: 5 LaTex pages, 5 eps figs, epsf.sty, espcrc2dsa2.sty. Proceedings of TAUP97, Gran Sasso, Italy, 7-11 Sep 1997, Nucl. Phys. Suppl., A. Bottino, A. di Credico and P. Monacelli (eds.). See also http://cfpa.berkeley.ed

    Differential Effect of Contrast Polarity Reversals in Closed Squares and Open L-Junctions

    Get PDF
    Scene segmentation depends on interaction between geometrical and photometric factors. It has been shown that reversals in contrast polarity at points of highest orientation discontinuity along closed contours significantly impair shape discrimination performance, while changes in contrast polarity at straight(er) contour segments do not have such deleterious effects (Spehar, 2002). Here we employ (semi) high resolution fMRI (1.5 mm × 1.5 mm × 1.5 mm) to investigate the neuronal substrate underlying these perception effects. Stimuli consisted of simple elements (a) squares with contrast reversals along straight segments; (b) squares with contrast reversals in the corner (highest orientation discontinuity); (c) L-Junctions with contrast reversals along the straight ends; (d) L-Junctions with contrast reversals in the corner. Element with contrast polarity reversals are easy to distinguish though appear geometrically equivalent. For squares with contrast polarity reversals only along straight lines we find significantly lower BOLD modulation compared to any of the control conditions, which show similar responses to each other. In the light of previous psychophysical work (Elder and Zucker, 1993; Spehar, 2002) we speculate that this effect is due to closure perception. We observe this across a wide range of areas on occipital cortex

    A Large Scale Double Beta and Dark Matter Experiment: GENIUS

    Full text link
    The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated the large potential of double beta decay to search for new physics beyond the Standard Model. To increase by a major step the present sensitivity for double beta decay and dark matter search much bigger source strengths and much lower backgrounds are needed than used in experiments under operation at present or under construction. We present here a study of a project proposed recently, which would operate one ton of 'naked' enriched GErmanium-detectors in liquid NItrogen as shielding in an Underground Setup (GENIUS). It improves the sensitivity to neutrino masses to 0.01 eV. A ten ton version would probe neutrino masses even down to 10^-3 eV. The first version would allow to test the atmospheric neutrino problem, the second at least part of the solar neutrino problem. Both versions would allow in addition significant contributions to testing several classes of GUT models. These are especially tests of R-parity breaking supersymmetry models, leptoquark masses and mechanism and right-handed W-boson masses comparable to LHC. The second issue of the experiment is the search for dark matter in the universe. The entire MSSM parameter space for prediction of neutralinos as dark matter particles could be covered already in a first step of the full experiment - with the same purity requirements but using only 100 kg of 76Ge or even of natural Ge - making the experiment competitive to LHC in the search for supersymmetry. The layout of the proposed experiment is discussed and the shielding and purity requirements are studied using GEANT Monte Carlo simulations. As a demonstration of the feasibility of the experiment first results of operating a 'naked' Ge detector in liquid nitrogen are presented.Comment: 22 pages, 12 figures, see also http://pluto.mpi-hd.mpg.de/~betalit/genius.htm

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade

    Oncocytic carcinoma of the parotid gland with late cervical lymph node metastases: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Oncocytic carcinoma is a rare proliferation of cytomorphologically malignant oncocytes mainly found in glandular tissue, accounting for 0.5% of all epithelial salivary gland malignancies and 0.18% of all epithelial salivary gland tumors.</p> <p>Case presentation</p> <p>We report a case of oncocytic carcinoma arising in the parotid gland of a 65-year-old Caucasian man. Our patient initially underwent left superficial parotidectomy, including the removal of the mass. A close follow-up was made, and four years after first surgery cervical lymph node metastases were confirmed. Therefore, a complete parotidectomy and radical neck dissections were performed. There were no complications and no sign of recurrence after six months of follow-up.</p> <p>Conclusion</p> <p>Oncocytic carcinoma is an extremely rare malignancy in the salivary glands. Prophylactic neck dissection may be indicated for tumors larger than 2 cm in diameter (our patient's tumor was 2.5 cm at its greatest diameter). The clinical course of our patient, with the appearance of cervical lymph node metastases after four years of follow-up, supports this approach. Further investigation of the prognosis and correct treatment of patients with oncocytic carcinoma are required as more cases are reported.</p

    Too close for comfort: spatial patterns in acorn barnacle populations

    Get PDF
    Spatial patterns in aggregations form as a result of the interplay between costs and benefits experienced by individuals. Such self-organisation of aggregations can be explained using a zonal model in which a short-range zone of repulsion and longer-range zone of attraction surrounding individuals leads to emergent pattern properties. The signal of these processes can be detected using spatial pattern analyses. Furthermore, in sessile organisms, post-settlement mortality reveals the relative costs and benefits of positions within the aggregation. Acorn barnacles are known to require contact with conspecifics for reproduction and are therefore believed to aggregate for this purpose; isolated individuals may also be more susceptible to abiotic stress and predation. At short distances, however, competition for space and resources is likely to occur. In this study spatial patterns of barnacles (Semibalanus balanoides L.) were analysed using pair-correlation functions. Individuals were dispersed at distances below 0.30 cm, but peak relative density occurred at a distance of 0.36 cm from conspecifics. This is much closer than required for reproductive access, implying a strong aggregative drive, up to the point of physical contact with neighbours. Nevertheless, analysis of dead barnacles illustrated that such proximity carries a cost as barnacles with many neighbours were more likely to have died. The inferences obtained from these patterns are that barnacles aggregate as closely as they can, and that local neighbourhood competition is a powerful determinant of mortality. These processes give rise to the observed pattern properties

    The early career researcher's toolkit:translating tissue engineering, regenerative medicine and cell therapy products

    Get PDF
    Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization

    NiftyPET: A high-throughput software platform for high quantitative accuracy and precision PET imaging and analysis

    Get PDF
    We present a standalone, scalable and high-throughput software platform for PET image reconstruction and analysis. We focus on high fidelity modelling of the acquisition processes to provide high accuracy and precision quantitative imaging, especially for large axial field of view scanners. All the core routines are implemented using parallel computing available from within the Python package NiftyPET, enabling easy access, manipulation and visualisation of data at any processing stage. The pipeline of the platform starts from MR and raw PET input data and is divided into the following processing stages: (1) list-mode data processing; (2) accurate attenuation coeffi- cient map generation; (3) detector normalisation; (4) exact forward and back projection between sinogram and image space; (5) estimation of reduced-variance random events; (6) high accuracy fully 3D estimation of scatter events; (7) voxel-based partial volume correction; (8) region- and voxel-level image analysis. We demonstrate the advantages of this platform using an amyloid brain scan where all the processing is executed from a single and uniform computational environment in Python. The high accuracy acquisition modelling is achieved through span-1 (no axial compression) ray tracing for true, random and scatter events. Furthermore, the platform offers uncertainty estimation of any image derived statistic to facilitate robust tracking of subtle physiological changes in longitudinal studies. The platform also supports the development of new reconstruction and analysis algorithms through restricting the axial field of view to any set of rings covering a region of interest and thus performing fully 3D reconstruction and corrections using real data significantly faster. All the software is available as open source with the accompanying wiki-page and test data
    • 

    corecore