191 research outputs found

    Strigolactones, from Plants to Human Health: Achievements and Challenges

    Get PDF
    Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents

    Applying Computational Scoring Functions to Assess Biomolecular Interactions in Food Science: Applications to the Estrogen Receptors

    Get PDF
    During the last decade, computational methods, which were for the most part developed to study protein-ligand interactions and especially to discover, design and develop drugs by and for medicinal chemists, have been successfully applied in a variety of food science applications [1,2]. It is now clear, in fact, that drugs and nutritional molecules behave in the same way when binding to a macromolecular target or receptor, and that many of the approaches used so extensively in medicinal chemistry can be easily transferred to the fields of food science. For instance, nuclear receptors are common targets for a number of drug molecules and could be, in the same way, affected by the interaction with food or food-like molecules. Thus, key computational medicinal chemistry methods like molecular dynamics can be used to decipher protein flexibility and to obtain stable models for docking and scoring in food-related studies, and virtual screening is increasingly being applied to identify molecules with potential to act as endocrine disruptors, food mycotoxins, and new nutraceuticals [3,4,5]. All of these methods and simulations are based on protein-ligand interaction phenomena, and represent the basis for any subsequent modification of the targeted receptor's or enzyme's physiological activity. We describe here the energetics of binding of biological complexes, providing a survey of the most common and successful algorithms used in evaluating these energetics, and we report case studies in which computational techniques have been applied to food science issues. In particular, we explore a handful of studies involving the estrogen receptors for which we have a long-term interest

    Chemogenomics of pyridoxal 5′-phosphate dependent enzymes

    Get PDF
    Pyridoxal 5'-phosphate (PLP) dependent enzymes comprise a large family that plays key roles in amino acid metabolism and are acquiring an increasing interest as drug targets. For the identification of compounds inhibiting PLP-dependent enzymes, a chemogenomics-based approach has been adopted in this work. Chemogenomics exploits the information coded in sequences and three-dimensional structures to define pharmacophore models. The analysis was carried out on a dataset of 65 high-resolution PLP-dependent enzyme structures, including representative members of four-fold types. Evolutionarily conserved residues relevant to coenzyme or substrate binding were identified on the basis of sequence-structure comparisons. A dataset was obtained containing the information on conserved residues at substrate and coenzyme binding site for each representative PLP-dependent enzyme. By linking coenzyme and substrate pharmacophores, bifunctional pharmacophores were generated that will constitute the basis for future development of small inhibitors targeting specific PLP-dependent enzymes

    Global Diversification, Industrial Diversification, and Firm Value

    Get PDF
    Using a sample of 27,287 firm-years over the period of 1983-1993 we document an increasing trend in both the incidence and level of global diversification over time. This trend does not, however, reflect a substitution of global for industrial diversification. Global diversification results in average valuation discounts of the same magnitude as those for industrial diversification. Analysis of the changes in excess value associated with changes in diversification status reveals that increases in global diversification reduce excess value, while reductions in global diversification increase excess value

    Correction: Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step

    Get PDF
    Correction for 'Recent advances in the synthesis of analogues of phytohormones strigolactones with ring-closing metathesis as a key step' by Chiara Lombardi, et al., Org. Biomol. Chem., 2017, DOI: 10.1039/c7ob01917c
    • …
    corecore