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ABSTRACT: Tyrosine kinases are a subfamily of kinases with
critical roles in cellular machinery. Dysregulation of their active or
inactive forms is associated with diseases like cancer. This study
aimed to holistically understand their flexibility−activity relation-
ships, focusing on pockets and fluctuations. We studied 43
different tyrosine kinases by collecting 120 μs of molecular
dynamics simulations, pocket and residue fluctuation analysis, and
a complementary machine learning approach. We found that the
inactive forms often have increased flexibility, particularly at the
DFG motif level. Noteworthy, thanks to these long simulations
combined with a decision tree, we identified a semiquantitative
fluctuation threshold of the DGF+3 residue over which the kinase
has a higher probability to be in the inactive form.

■ INTRODUCTION
Tyrosine kinases (TKs), both receptor and nonreceptor, are a
large and diverse family of proteins found in unicellular and
multicellular organisms across all holozoans.1,2 TKs control
and regulate several biological processes, including cell-to-cell
communication, cell growth, motility, differentiation, metabo-
lism, and cell apoptosis.3 TKs frequently transmit signals
related to these processes by modulating signal transduction
via phosphorylation of tyrosine residues (i.e., the transfer of an
ATP phosphate to a tyrosine side chain on protein substrates).
In humans, dysregulated TKs participate in the development of
many diseases, including neoplasms, diabetes, and devel-
opmental congenital syndromes.4 TKs form a class of
oncogenes involved in most forms of human cancer.5,6 These
kinases (e.g., EGFR-TK, ABL1, JAK2) are key players in
pathways inducing many neoplastic changes (e.g., malignant
transformation, growth, metastasis) and are preferentially
mutated in tumor cells.7−9

Over the past three decades, high-resolution structural
studies have provided the molecular basis for understanding
the mechanisms by which TKs are regulated and, in turn,
regulate downstream processes. A kinase’s activation state is
determined by several structural features, which are mostly
found in the activation loop (A-loop) and the αC-helix10−12

(Figure 1 shows key TK regions). Kinases can adopt a closed
or open conformation of the A-loop and a stretched or
collapsed P-loop (the “phosphate-binding loop” or “glycine-
rich” loop,) which are potential hallmarks of the open/closed
state of the active site (e.g., c-MET, ABL1).11,13 The kinase

domain’s “open state” facilitates the active conformation, and
the “closed state” favors an inactive conformation. TK features
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Figure 1. Map of the analyzed pockets and key activity regions of a
Tyrosine Kinase. In the inset, the A-loop (orange) with the side
chains of the DFG motif is shown in sticks (residue numbering
according to IRK, PDB ID 5hhw33).
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are often associated with activity.14 These features include: (i)
the opening of the A-loop to an extended state and an inward
rotation of the αC-helix resulting in the formation of the
typical K/E salt bridge; (ii) the rotation of the αC-helix
altering the hydrophobic regulatory spine (R-spine); (iii) the
formation of a tight electrostatic network from the C-lobe
catalytic loop to the N-lobe αC and β-sheet, and across the A-
loop, which comprises six polar highly conserved residues in
the catalytic domain acting as a switch during activation; and
(iv) the presence of charge asymmetry in the A-loop.
Phosphorylation of the A-loop is also crucial to most TK
activation because it rigidifies the structure, upregulating the
kinase activity (e.g., Y416 in the Src family TKs,14 Y1007/
Y1008 in the Janus kinase 215). Hence, conformational
plasticity is necessary for TK activity.16 Several in silico studies
of TKs have described the mechanisms of kinase activity
switching (e.g., KIT,17 c-Src,18,19 EGFR,20 FGFR221). In
1996,22 researchers attempted to summarize the structural
basis for kinase regulation in order to rationalize the activation
segment’s role, based on the distinction between active and
inactive kinases. More recently, researchers have proposed
several methods to distinguish active from inactive forms.
These include: (i) approaches based on DFG-in/DFG-out
conformation along with the αC-helix orientation (in/out/
intermediate);23,24 (ii) knowledge based kinase-ligand inter-
action space determination;25,26 (iii) Brooijman’s method;27

(iv) ABC method;28 (v) hydrophobic R-spine;29,30 and (vi)
normal-mode analysis.31

The present study used an unbiased big-data-driven protocol
to identify regularities and differences in TKs and, thus,
understand their activity. We conducted a massive simulation
campaign of about 120 μs coupled with analyses based on
machine learning (ML) methods. While simulating a single
complex can generate a wealth of highly specific informa-
tion,32,33 we took a more holistic approach based on high-
performance computing and ML. Indeed, a single-frame or
single-protein analysis would not have produced the present
findings. In detail, starting from the produced trajectories, we
performed a TK-kinome-wide analysis of the time-averaged
volumes of pockets and the probability distributions of pockets
connections. Then, we characterized each TK’s activity profile
with a dynamical quantity i.e., fluctuations in residue
backbones via root-mean-square fluctuations (RMSF). Finally,
we focused on three kinases with interesting predicted
dynamical activity/inactivity patterns: the insulin receptor
kinase (IRK), vascular endothelial growth factor receptor 2
(VEGFR2), and Bruton’s tyrosine kinase (BTK).

■ RESULTS AND DISCUSSION
We simulated 43 TKs for a total sampling time of about 120
μs. Each system was simulated for at least 1 μs, with 3 μs being
the typical sampling time. We employed simple plain MD as it
already proved reliable for studying pockets cross-talks,33 and
we were not aiming to the detection of activity switching,
which we already studied elsewhere.32 Table S1 reports details
of the individual systems, their PDB IDs, and the activity/
inactivity information from each structure’s reference paper.
Where the reference paper did not clearly indicate the active/
inactive state, we used Kinconform30 to infer the initial state
(see Methods for details). Where the active/inactive state was
clearly indicated in the literature, our predictions fully agreed
with these indications.

We assigned a code to each of the 43 molecular dynamics
(MD) simulations in the form of NAME[α]-β[i/a] (see Table
S1), where NAME is the abbreviated TK name, α is the
optionally indicated TK isoform, β is the index of the
simulation (where multiple PDBs of the same TK were
simulated), and a subscripted “i” or “a” indicates structures
labeled ab initio as inactive or active, respectively. Hereafter,
we use the sequence numbering of the insulin receptor kinase
(IRK, PDB ID 5hhw)34 as reference, unless otherwise
specified.

Pockets in the TK Kinome. We statistically analyzed the
dynamical behavior of pockets (i.e., from trajectories) in the
TK kinome to understand the difference between pockets in
active and inactive TKs. We analyzed the ATP binding site and
the six pockets indicated in Figure 1 (AAS, CMP, DRS, PDIG,
PIF, MPP), which are a subset of the 12 alternative sites whose
“ligandability” was tested by Yueh et al.35 The other six pockets
were excluded. In detail, DEF (typical of the MAPK family)36

was excluded because the folds of MAPKs and TK at DEF are
not comparable. MT3 and DFG are very close to the ATP site,
with which they often merge. EDI (i.e., EGFR-family
Dimerization Interface) is at the interface between two kinases,
so found only upon dimerization.37 PMP and LBP are absent
from the TK family.35 Upon simulating the TKs via plain
(unbiased) MD, we ran Pocketron33 to estimate each pocket’s
time-averaged volume and characterize the interpocket
communication network (see Methods for details). This shed
light on how activity/inactivity correlates with the distribution
of pocket volumes and pocket connectivity. The existence of a
link between two pockets indicates a degree of flexibility in
neighboring residues but might also indicate an allosteric
communication between the two pockets. Here, we are
interested in how the number of links is statistically
distributed.33 Collectively, these statistics provide information
about the TK family and offer a global dynamical data-driven
vision of the TK “pocketome”. In Figure 2, we report the
statistics (histogram) of the time-averaged volumes for each
kinase pocket according to the active-inactive state of the TKs.
Notably, the ATP site volume is almost independent of the
active/inactive state. The two histograms (orange for inactive,
blue for active, Figure 2A) are significantly superimposed, with
an average volume of about 500−600 Å3, as confirmed by the
two-means Welch’s t test38 (significance threshold = 0.05, p =
0.174, see Methods for further details). The inactive state has a
marginal propensity to acquire bigger volumes. For the other
pockets (Figure 2B), the active or inactive TK state marks a
difference, which may be more or less noticeable depending on
the specific case. In general, the pocket volume distribution is
broader for inactive TKs than for active ones. This is consistent
with the intuitive expectation that there are many ways to be
inactive, while the requirements for activity are stricter and,
thus, less variable. In mechanistic terms, pockets from inactive
TKs, which are possible allosteric sites, are less rigid and tend
to adopt different shapes and sizes. Hence, we observed a left-
shift of the distribution for active TKs, i.e., they generally have
smaller volumes.
Moreover, the probability of a null volume (pocket absence)

is much higher for active than for inactive kinases. These
pockets, in active TKs forms, tend to be more elusive. This is
particularly relevant for the AAS pocket, which is absent from
75% of active kinases but always present for inactive kinases,
albeit with a relatively small volume. To quantitatively and
rigorously confirm this qualitative evidence (Figure 2B), we
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performed the statistical two-means Welch’s t test on the active
vs inactive TKs pockets; we checked if there was statistically
significant evidence of difference between volumes in active
and inactive forms. For the CMP, PIF, AAS, and PDIG

pockets, a difference was indicated by the p-values (0.024,

7.472e-04, 2.351e-07, and 0.022, respectively). However, the

differences in the mean volumes of the two populations for

Figure 2. Distribution of the average volumes for all the analyzed pockets divided into active (blue) and inactive (orange) kinases; A. ATP pocket,
and B. Allosteric sites. A volume of zero means that the corresponding pocket was not detected during the simulation in at least one system.
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DRS and MPP were not statistically significant (0.432 and
0.426, respectively).
In the second analysis, we collected statistics on each

pocket’s connections, thus evaluating their ability to establish a
network around themselves (Figure 3). This is a direct

measure of flexibility and may indicate the propensity to create
allosteric communication. Here, the active and inactive forms
were slightly more homogeneous (Welch’s t test p-values: ATP
0.460, CMP 0.560, DRS 0.833, AAS 0.666, PDIG 0.207). For
PIF and MPP, the distributions showed a pronounced left-shift

Figure 3. Distribution of the connections for all of the analyzed pockets divided into active (blue) and inactive (orange) kinases. A. ATP pocket, B.
Allosteric sites.
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(p = 0.086 and 0.061, respectively), which was only slightly
above the significance threshold. Together with the previous
observation, this shows that pockets in active TKs are rarer and
slightly less connected to each other. On average, the TKs in
active forms are more stable and less flexible. Interestingly, this
result was obtained via plain MD simulations only, avoiding
the potential unphysical bias associated with enhanced
sampling.
Plasticity is a widely studied topic in kinases. Other

researchers have also reported on flexibility patterns. Chen et
al.39 reached similar conclusions using a kinematic flexibility
analysis. Kornev et al.29 found that the unconstrained
magnesium-binding loop (i.e., the part of the activation
segment that includes the DFG motif and the two following
residues) becomes flexible and can attain different inactive
configurations. Levinson et al.40 and Vogtherr et al.41 reported
this observation for ABL and p38 kinases, respectively, in
which the DFG motif flips between in and out conformations
in the inactive state. This confirms that active kinases, in
particular, the activation segment (from DFG to DFG+6), are
generally less flexible than inactive kinases. Hence, flexibility
and fluctuations may help to identify the state of a kinase.
Below, we use ML to investigate this point in greater detail.

Fluctuations and Activity. To explicitly relate activity and
fluctuations, we created an ad hoc data set of root-mean-square
fluctuation (RMSF) values, where columns and rows represent
residues and kinases, respectively, aligned according to
sequence similarity (Figure S1). Each kinase was labeled as
active or inactive according to its average activity state during
the MD trajectory (Figure S2). The activity estimation for each
frame was obtained with Kinconform30 and it was fully
consistent with data coming from crystals and literature when
the data were available.
First, the matrix was projected into a 2D space with the t-

SNE algorithm42,43 (Figure 4A). Inactive kinases were slightly
more scattered than active ones, yet active kinases failed to
create a well-defined single cluster. Next, to visualize the
fluctuations, the transposed data set matrix was projected with
the t-SNE42,43 (Figure 4B). Nearby residues showed similar
fluctuations. The plot shows that residue fluctuations are often
correlated (points can be clustered).
To understand if any relation holds between fluctuation and

activity, we built a classifier (a decision tree) using the
fluctuations as input and activity/inactivity as a prediction
target. To make the tree as interpretable as possible and avoid
overfitting, we constrained it to contain only one if-then-else
rule.44 Data were randomly split into 30 training samples and
13 validation samples. We predicted activity with a balanced
accuracy (see Methods) of 72.96% ± 11.78% (one standard
deviation) by randomizing the splits 100 times while keeping
the same sample ratio (0.7). As the tree depth is one, the final
model is just a single rule, with a threshold on the fluctuation
of one single residue. The trained model systematically
identified a highly conserved lysine (or arginine) located at
the DFG+3 position, namely in the activation segment
(residue 1182 in our reference structure),34 the juxtaposed
residue after the magnesium-binding loop. This is consistent
with the role of DFG+3 in activation.29 However, to the best of
our knowledge, there are no reports in the literature of a
specific fluctuation threshold. We found that, if the fluctuation
is below a threshold of 0.9 ± 0.2 Å, the kinase is classified as
active; otherwise, it is inactive. This was quantitatively
confirmed with the Lasso method,45 which also identified

this residue. For corroboration, we performed an ablation
study of the key K/R residue. We removed this residue from
the matrix and checked which residue was selected from the
tree. After ablation, the decision tree predicted the DFG+2
residue to be the best predictive residue for the kinase activity.
Indeed, in Figure 4B, the DFG+2 and DFG+3 residues show
highly correlated fluctuations. Removing the DFG+2 residue
led to the identification of the DFG+1 residue. Removing the
DFG+1 residue caused a significant decrease in the
classification accuracy. For all of these cases, the rule
consistently predicts activity when the fluctuation threshold
is not exceeded. This indicates the overall importance of the
movement of the A-loop backbone and points to the activation
segment as a dynamically well-characterized region for
determining the TK activity. In summary, a modest fluctuation
of the loop may indicate activity, whereas a greater fluctuation
tends to indicate an inactive state. Further checks were done
on the possible bias induced by loop-reconstruction, as we
modeled the activation loop in 13 out of 43 systems, and out of
13 only on 4 systems was the DFG+3 residue involved. First,

Figure 4. A. t-SNE projection of active and inactive TK proteins. B. t-
SNE projection of the transposed space, with nearby residues having
similar fluctuations. The red dotted line represents the DFG+3
residue, which determines the tree decision rule. The blue dots inside
the green ellipses show the residues with fluctuations correlated to
those of DFG+3. C. The DFG+3 arginine residue is colored red; in
some TKs, a lysine replaced the arginine.
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we removed the 4 systems where the DFG+3 residue was
reconstructed; we found a balanced accuracy of 68.51% ±
11.55%. Next, we removed all 13 kinases for which a loop
reconstruction has been done, this time finding 65.64% ±
12.31%. To understand better if the 13 loop-reconstructed-
kinases might represent a source of bias, we built a decision
tree with these kinases only; we found in this case a balanced
accuracy of 82.99% ± 23.53%. As in the 13 systems, 9 were
inactive; taken together, all these data might suggest that loop
reconstruction could contribute as a source of bias if we
hypothesize that it affects more the behavior of inactive kinases
(rendering them more flexible than expected). Nevertheless,
we still got a more than chance result, even excluding all loop-
reconstructed structures.
Given this fluctuation pattern at DFG+3, we characterized it

further by analyzing the interactions of this residue in the 43
simulations. Figure S4 reports the progress of the interactions
established during the trajectory of a pair of TKs. There is a
clear difference between the inactive and active C-terminal TK
domains of Janus kinase 2: JAK2-1i (PDB ID 3ugc)46 and
JAK2-2a (PDB ID 6bbv)47 respectively. They were chosen as a
representative case of the emerging picture, clearly showing the
different trends for active and inactive TKs (irrespective of the
presence of a K or R at the DFG+3 position).
The interactions established by DFG+3 in the active TK

were stable during the simulation (Figure S4, panel B).
However, inactive TK interactions were clearly fluctuating and,
thus, unstable and nonspecific (Figure S4, panel A). For
simulations without a stable activity plot (Figure S2), the DFG
+3 interaction analysis found a mixture of stable and unstable
interactions (e.g., BTK, Figure S4, panel C). Overall, the DFG
+3 residue appears stable for active kinases, but the stabilizing
partner residue depends on the specific TK.
In a nutshell, inactive kinases are more flexible both globally

and locally. Flexibility thus tends to indicate activity status. The
most relevant residue is DFG+3 (not DFG itself), whose
flexibility/fluctuation can be considered a new semiquantitative
hallmark of activity/inactivity. Interestingly, this residue is
conserved (i.e., R or K) in all 43 TKs considered in this work
and is highly conserved in the TK family. For the full set of
TKs considered by Modi and Dunbrack,48 85 of the 94
structures bear a positively charged arginine, lysine, or histidine
at DFG+3. Moreover, DFG+3 is a positively charged residue in
280 of the 497 protein kinase domains of the full human
kinome.48

System Specific Analysis. In this section, we analyze in
depth some systems that apparently switch activity (as
predicted by Kinconform30). While full activation/inactivation
transition requires time scales beyond our scope, our
simulations still point to relevant conformational changes.
We carried out this analysis for VEGFR2, IRK, and BTK,
taking advantage of both the activity predictor and cluster
analysis.

Vascular Endothelial Growth Factor Receptor 2
(VEGFR2). We considered a pair of inactive and (putatively)
active forms of VEGFR2 kinase domain, namely VEGFR2-1i
(PDB ID 3vo3)49 and VEGFR2-2a (PDB ID 3cjg)50 VEGFR2-
2a was deemed active by the activity predictor, but this
information was not available in the deposited structure (PDB
ID 3cjg).50 We classified each MD-generated conformation for
both trajectories (VEGFR2-1i and VEGFR2-2a) with Kincon-
form30 (Figure 5B). VEGFR2-1i oscillated between 0% and
40% of the activity probability at the beginning of the

simulation and reached stability (∼20% activity) after 1 μs
(Figure 5A). The starting structure’s initial activity value was
5%, and the average activity during the trajectory was 17.7%
(Table S1, no. 23). Overall, the simulated conformations for
this kinase mainly sampled inactive conformations. The
VEGFR2-1i trajectory was stable at a level of ∼0.2−0.25 nm
RMSD compared to the starting structure and was thus
considered to be structurally converged (Figure S3, no.23).
The literature reports this kinase as “inactive”,49 in agreement
with our findings: the “DFG-out” conformation was preserved,
and the A-loop was in the inhibitory conformation. In contrast,
the initial conformation of VEGFR2-2a was classified as 100%
active. This structure switched to the fully inactive form after
600 ns of simulation time (Figure 5B). Subsequently, it
continued to sample inactive conformations until the end of
the simulation at 3 μs (Figure 5B). For this kinase system, we
reconstructed some residues (see Table S1) on the A-loop and
3 residues on the P-loop because they were missing from the
X-ray crystal structure. Therefore, relatively long simulation
times (on the order of 2 μs) were needed to fully equilibrate a
reconstructed loop and determine the activity level in a stable
way. Despite the fact that we observed this peculiar finding
only for this kinase, this demonstrates that significant
relaxation times might be required before any full production
step in order to obtain robust results, particularly with free
energy computations. Additionally, one can estimate the
correct equilibration time using an activity score in order to
objectively decide when to stop equilibration. This could be
further extended to other systems (e.g., GPCRs) and other
scores that capture some key information beyond the usual
RMSD value.
The cluster analysis revealed only the inactive conformation

of VEGFR2-1i (Figure 5C), in agreement with activity plots
calculated with the ML classifier. Indeed, all conformations can
easily interconvert, even among the most populated clusters
(i.e., C0, C3, C8). VEGFR2-2a kinase explored mostly inactive
conformations with an exceedingly small population of active
states, as shown by the color-coded representation of the
clusters (Figure 5D).
Out of ten clusters, only C7 presented an active

conformation (55%) and remained isolated from the rest of
the graph. To understand the structural differences, we
superimposed the medoids of C2 and C6 on C7 (Figure
5E). C6 was highly linked to clusters C0, C1, C3, C5, C8, and
C9, forming a clique. C4 behaved as a hub through which the
C7 and C6 populations interconverted. The structural
comparison revealed that the deviations were mainly associated
with the DFG-motif and A-loop, as represented by the red
circles (Figure 5E). The conformation associated with C7
represents an “open state” (Figure 5G, in green), whereas the
corresponding conformer of C6 reveals a “partially closed
state” of the kinase domain (Figure 5G, in blue). Notably, the
“open state” facilitates the active conformation, whereas the
“closed state” favors an inactive conformation. A small
population of intermediate states was also found in C2 (Figure
5D). The conformation from C2 has an intermediate
orientation of the phenyl ring of DFG F1045 as well as the
A-loop (Figure 5G, in white), when compared to C6 and C7.
These findings, together with the activity plot, show a coherent
picture of partial inactivation during the MD run (see also
Figure S5 for further structural comparisons of clusters).

Insulin Receptor Kinase (IRK). For the IRK (Figure 6A),
we considered an apo (inactive) crystal structure in the
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unphosphorylated form (IRK-1i, PDB ID 1irk)51 and a second
inactive structure in complex with an inhibitor (IRK-2i, PDB
ID 5hhw,34 see Figure S6 for comparison). From the 3-μs-long
simulation for IRK-1i, all conformations were predicted to be
structurally inactive. The average activity was predicted to be
3.8% (Figure 6A, Table S1, no. 10), and the whole trajectory
was stable in both the activity plot and RMSD (Figure S3,
no.10). The IRK-2i cocrystal was reported as inactive34

because of the presence of an inhibitor, which we removed
for the simulation. However, IRK-2i also sampled some
partially active conformations (50%−65% activity, Figure
6B). The activity percentage of the initial conformation was
estimated to be 10%, whereas the average activity along the
whole trajectory was 33.9% (Table S1, no. 41). The MD

simulation sampled conformations with partial activity (activity
ranges between 40% and 65%) for the first ∼1 μs. After ∼1.3
μs, however, the sampled conformations were all inactive
(Figure 6B), with an activity of 10−30%. Interestingly, the
system again started sampling partial active conformations
(50% −65% activity) after 2 μs until the simulation end.
For IRK-1i, the clustering graph was fully connected,

demonstrating that the conformations could easily interconvert
(Figure 6C). Each medoid had a predicted activity level
ranging between 0% and 10% only. For IRK-2i, the cluster
analysis mainly revealed two well-populated clusters, C1 and
C2, located close together in the RMSD space (Figure 6D).
Both clusters sampled structurally inactive states of the

kinase. C0 and C4 were identified as moderately active, with

Figure 5. A-B. Activity probability estimation along the MD trajectories of VEGFR2 kinase, namely VEGFR2-1i and VEGFR2-2a (Table S1, no. 23
and no. 43, PDB ID 3vo3 and 3cjg, respectively). C−D. Cluster analysis of VEGFR2-1i and VEGFR2-2a. Cluster medoids are colored according to
the activity value. E. Superposition of representative conformations from C7 (green), C2 (white), and C6 (blue) of VEGFR2-2a. F. Time evolution
over the clustering graph. G. Structural comparison of the A-loop and the “DFG-motif” among C7 (open), C2 (intermediate), and C6 (partially
closed). Side chains of K866, E883, D1044, and F1045 are displayed in sticks (residue numbering according to PDB ID 3cjg).
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C4 having higher activity values (around 55%). We compared
the representative conformations of C0, C1, and C2 to clarify
the activity switching in correlation with the structural
differences (Figure 6E). The cluster centers are the structures
at simulation times 129, 2346, and 1869 ns, respectively, and
bear the main differences in the A loop (Figure S6). This
structural evidence indicates that A-loop switching is mainly
associated with the activity status. The C0 cluster, showing
50% activity (Table S2, no. 41), represents a partially closed
configuration of the ATP binding pocket, in which the DFG
aspartate is pointing out toward the cleft. At the same time, the
phenylalanine resides inside the pocket (Figure 6G, in green,
Figure S7). Moreover, in the corresponding medoid, the K-E
salt bridge is lost. On the other hand, the C2 medoid (Figure
6G) is an inactive conformation of IRK-2i (5% of estimated
activity only, Table S2, no. 41). Finally, the C1 medoid (Figure

6G, in white) shows an intermediate conformation of the A-
loop compared with the C0 and C2 clusters (Figure 6G, in
green and blue, respectively). Indeed, the medoid structure
extracted from C1 showed 40% activity.

Bruton’s Tyrosine Kinase (BTK). Only a putatively
inactive conformation of BTK was available (BTKi). The
simulation mostly sampled inactive conformations, along with
a few partially active states (Figure 7A). The average activity of
this kinase was estimated at 22.8% (Table S1, no. 42), while
the initial activity was estimated at 35%. A few conformations
were obtained with 50−60% activity in the first 2 μs of MD
simulation. In the final 1 μs, the system mainly sampled
inactive states (Figure 7A). The PDB structure (1k2p) and the
literature reported BTKi as an unphosphorylated and inactive
kinase, revealing a unique mechanism of activation.52

According to the literature, the A-loop had an active-like

Figure 6. A-B. Activity probability estimation along the MD trajectories of IRK, IRK-1i, and IRK-2i (Table S1, no. 10 and no. 41). C−D. Cluster
analysis and representative conformations of IRK-1i and IRK-2i. E. Superposition of the representative conformations from cluster C0, C1, and C2
of IRK-2i, in green, white, and blue, respectively. F. Time evolution over the clustering graph. G. Structural comparison of the A-loop among C0
(“partial open”), C1 (“intermediate”), and C2 (“closed”) of IRK-2i. F1178, and D1177 belong to the “DFG-motif”. Dotted lines in blue indicate the
distance of A-loop from K1057 (β3-strand) and E1074 (αC-helix) (residue numbering according to PDB ID 5hhw).
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noninhibitory conformation, whereas the αC-helix adopted an
inactive conformation (Figure S8). Thus, BTK could be a
special case relative to the other inactive TKs, where the A-
loop appears in a closed state. Moreover, the crystal structure
does not show the possibility of a salt bridge formation
between the K430 and E445 residues,52 which is considered
one of the crucial hallmarks for BTK activation.53 Rather, E445
seems to stabilize the R544 side chain of the A-loop to preserve
its open conformation, preventing formation of the K430-E445
salt bridge52 (Figure S9).
Of the 10 clusters, only C0 was captured as a small

population of partially active conformations (Figure 7B). The
C0 cluster is quite small (Figure 7B) compared to the others,
which is in line with the activity plot. From the time mapping,
C0 and C7 represent the conformations of BTKi at the
beginning (54 ns) and at the end (2805 ns) of the MD
simulation, respectively (Figure 7C). The C0 medoid shows
40% activity and the E445-R544 salt bridge (Figure 7D, in
green). On the other hand, C8 restores the inactive population
of BTKi (1458 ns simulation time). In the middle of the

simulation, the side chain of R544 flips toward the TK catalytic
site, and E445 (αC-helix) is free to interact with K430 (β3-
sheet; Figure 7D, in white). The cluster analysis also captured
a large medoid, C7, where E445 loses contact with K430, and
R544 is flipped as in C8 (Figure 7D, in blue). The
superposition of C0, C8, and C7 revealed another significant
change in the conformations of BTKi where the side chain
conformation of D539 of the DFG-motif was observed more
inside the ATP-site for C0 than C7 (Figure S9).

■ CONCLUSIONS
In this contribution, we report on a family wide analysis of
tyrosine kinases with a focus on some of their particular
activity patterns. We ran a massive MD campaign to
understand the flexibility−activity relationships in a large set
of representative tyrosine kinases. Physics-based simulation,
high-performance computing, and ML were the key tools.
Analysis of the pockets highlighted the increased flexibility of
the inactive structures. This finding confirms previous
observations with computations performed here for the first

Figure 7. A. Activity analysis of BTKiconsidering the MD trajectory. B. Cluster analysis of BTKi. Each medoid is labeled according to the activity.
C. Schematic representation of the time evolution of clusters. D. Representative conformations from C0, C7, and C8 show the structural changes of
BTKi over time. Secondary structures in green, white, and blue represent the corresponding conformations of C0, C8, and C7 (decreasing activity
order). Orientation of the side chains of K430, E445, D539, F540, and R544 are represented in sticks (residue numbering according to PDB ID
1k2p). A. Activity analysis of BTKi considering the MD trajectory. B. Cluster analysis of BTKi. Each medoid is labeled according to the activity. C.
Schematic representation of the time evolution of clusters. D. Representative conformations from C0, C7, and C8 show the structural changes of
BTKi over time. Secondary structures in green, white, and blue represent the corresponding conformations of C0, C8, and C7 (with decreasing
activity order). Orientation of the side chains of K430, E445, D539, F540, and R544 are represented in sticks (residue numbering according to
PDB ID 1k2p).
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time on a large, dynamic, and complete scale. We show that
flexibility (even of a single residue) may help predict activity,
with a validation-set accuracy higher than random chance. Key
amino acids are the arginine or lysine residues found in all 43
simulated TKs, and located at the DFG+3 position on which
fluctuations we were able to detect a semiquantitative
threshold. Considering the multiple-sequence aligned 497
human kinases,48 this DFG+3 residue is either Lys or Arg in
>90% of the TK family, in 66% (41/62) of the AGC family, in
68% (44/65) of the CMGC family, in 100% (11/11) of the
NEK family, in 58% (7/12) of the CK1 family, in 40% of the
TKL (17/42) and in 73% of the CAMK (37/51) families. An
ablation analysis showed that the fluctuations from DFG+1 to
DFG+3 are generally related to activity, which clearly indicates
the activation segment as the key player. This finding was
obtained in a fully unbiased way apart from the required loops’
reconstructions. The present rule is minimalistic and cannot
fully account for activity, yet it avoids overfitting and gives an
indication and a recognizable fingerprint. From a drug
discovery standpoint, this analysis identifies an opportunity
to target inactive forms when designing new TK ligands.
Indeed, for the inactive conformations, we found more
opportunities in terms of the presence, volumes, and potential
allostery of pockets. It is unclear if targeting the active or
inactive form is the proper choice for a given disease. However,
we know that targeting inactive forms often leads to increased
selectivity.54 Notably, by analyzing X-ray crystal structures of
active and inactive kinases, a related “selectivity exploring
flexibility” paradigm was proposed more than 20 years ago.54

Here, however, differently from that analysis, we have shown
that inactive forms tend to be different from each other, and
they also bear an intrinsically higher fluctuation propensity.
Moreover, we fully characterized the flexibility in a pocket
specific way which is unprecedented to Authors’ knowledge.
Lastly but possibly more relevantly, the collected trajectories

could be used as an atlas of conformations and pockets for
virtual screening and docking campaigns. The data set of
collected medoids is publicly available via the IIT Dataverse
(see Data Availability Statement and Software Availability).
These findings are valid for TKs. However, in accordance

with recent computational findings,39 we can conjecture that
the same flexibility pattern may hold for the kinase family in
general and that DFG+3 is a key residue for determining
activity. Lastly, our large-scale approach is entirely hypothesis-
free and heavily data-driven, so it could be translated to other
kinase families or even to other proteins of biological and
pharmaceutical interest (e.g., G-protein coupled or nuclear
receptors).

■ METHODS
Simulation Setup. To set up the simulations, we used the

BiKi Life Sciences software suite55 and the Amber 14 force
field.56 We parametrized the post-translationally modified
phosphotyrosine57 via the database at http://amber.
manchester.ac.uk. Missing loops were rebuilt using the BiKi
Life Sciences loop rebuilding tool or Schrödinger Maestro
(Release 2020−3: Maestro, Schrödinger, LLC, New York, NY,
2020). All simulations were run via Gromacs 4.6.1.58,59

Electrostatics was managed using the Particle Mesh
Ewald60,61 for long-range interactions and with a cutoff of
1.2 nm. Minimization was done via the steepest descent
method, and equilibration followed the standard BiKi protocol,

which encompasses 3 NVT steps of 100 ps each and a final
NPT step of 1 ns.
To analyze the systems, we used three different techniques:

(i) an existing ML classifier to estimate the activity/inactivity
of each molecular dynamics configuration30 (the activity plots
for all analyzed TKs are provided in Figure S2); (ii) a
clustering of structures via the k-medoids algorithm62 (the
clustering networks of all the TK are provided in Figure S10);
and (iii) the Pocketron33 algorithm to study the pockets and
their cross-talk.

Pocket Analysis. We ran this analysis with Pocketron.33

This tool is available in the BiKi Life Sciences suite (www.
bikitech.com),55 and can track pockets’ dynamical behaviors
along an MD trajectory. For each pocket, the Pocketron
algorithm can estimate the communication pattern among the
pockets and provide a corresponding “Pockets Network” map
of the system. The detection of the pockets at the frame level is
done by NanoShaper 0.7 (available at https://gitlab.iit.it/
SDecherchi/nanoshaper).63 To compute the pocket network
maps, Pocketron was applied to all MD trajectories of the 43
kinases with an interval of 100 ps between consecutive frames.
Initially, all the solvent molecules were removed to analyze
only the protein component, and the two default probe radii of
1.4 and 3 Å were used. This analysis also delivers “merging”
and “splitting” events of each pocket during the simulation.
Using the merge and split matrices,33 after making them
symmetric through averaging, we prepared a connection matrix
γ by averaging the corresponding values of the merge and split
matrices α and β:

1
2

( )ij ij ij= +

We computed two of these γ matrices: one for the active set
and one for the inactive set. Lastly, we computed the
connections’ distributions on the entries of this matrix by
considering each row at a time (as each row corresponds to a
single pocket).
To evaluate if the means of the volume distributions and the

number of connections for the different pockets were
statistically different for the active and inactive kinases, we
used Welch’s t test38 or unequal variances t test. This is a
generalization of Student’s hypothesis test statistic64 for
samples with unequal variances and/or unequal sample sizes,
as in the cases considered in our analysis.

Activity Prediction Based on Fluctuations. To perform
this analysis, we initially created a data set (“X” matrix) based
on RMSF values estimated from the trajectories by removing
the first 500 ns as equilibration time. To prepare the matrix, a
sequence alignment step was needed. We first retrieved the
UniProt sequences (www.uniprot.org) of each of the 43 TKs
of interest, then performed a multiple sequence alignment
using Clustal Omega65 (Figure S1). Finally, a 43 × 223 matrix
of RMSF values (based on the backbone atoms only) was
generated corresponding to each of the 223 residues for all 43
TKs (residue indices of all proteins are in Supporting Data File
1). The RMSF values of all the corresponding aligned residues
(Figure S1) were computed via Gromacs 2019.4.58 To
determine an activity label, “y”, for each kinase, we estimated
the average activity value predicted by Kinconform 1.030 along
the MD trajectories. This tool can distinguish kinase
conformations as active/inactive based on the orientation of
the activation segment alone.30 This prediction was coherent
with the inactivity/activity label reported in the literature, as
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such the “y” vector was essentially coming from experiments.
Overall, the simulations derived X matrix was used to predict
the experimental values in y as often happens in MD (e.g., free
energy estimations).
To project the matrix, we used the t-SNE method,44 and a

classification tree for building the classifier.44 To make it
interpretable, we constrained the solution to contain only one
rule only. We employed Python 3.7 and the Scikit-learn library
(version 0.22.1 on win64)66 to support this activity using all
default values (random_state = 0 for t-SNE). To estimate the
error, we split the data into training and validation sets with
various percentages, obtaining balanced accuracies between
70% and 80%. The balanced accuracy is the mean of the errors
in the positive and negative classes, hence giving a more
reliable measure than classical accuracy, which is heavily
influenced by class imbalance. The balanced accuracy is,
therefore, the mean of the sensitivity and specificity. Then we
fixed at 0.7 the ratio between training and validation set and
repeated the random split 100 times, obtaining a final balanced
accuracy 72.96% ± 11.78%.

Cluster Analysis. The MD trajectories were clustered
through the k-medoids algorithm62 implemented in the BiKi
Life Sciences suite.55,67 For cluster generation, we used the
RMSD matrix of the entire segment of the A-loop, including
the DFG-motif. The set of residues considered to perform the
cluster analysis is highlighted in the inset of Figure 1. Table S2
reports the activity percentage of each kinase conformation
corresponding to each cluster. The side chain of D1177,
F1178, and G1179 (PDB ID 5hhw)34 were selected along with
the backbone of the rest of the A-loop segment to be coherent
with the Kinconform features.30,68 Indeed, the authors
included the χ angle of F1178 and G1179 side chains
(according to PDB ID 5hhw)34 followed by several φ, ψ, and
pseudodihedral angles through the Cα atoms of the A-loop.69

We ran the clustering, always setting the number of clusters to
10 (Figure S10). The size of each cluster circle encodes its
cardinality, and the number on the edges encodes
interconversions between the clusters. Each medoid is the
most central frame of the cluster.

■ ASSOCIATED CONTENT

Data Availability Statement
The medoids data which supports the findings are available at
https://doi.org/10.48557/UARU6J. The resulting files from
the pocket analysis on the 43 TKs MD trajectories via
Pocketron are available at https://doi.org/10.48557/Z5E3YG.
The full trajectories are available upon request.
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the activity prediction. To support the fluctuation analysis we
used, the Clustal Omega Web server for sequence alignment,
Gromacs 2019.4 to build the RMSF matrix and the software
available at https://gitlab.iit.it/SDecherchi/kinase_atlas for the
machine learning analysis.
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■ ABBREVIATIONS
TKs tyrosine kinases
MD molecular dynamics
ML machine learning
A-loop activation loop
IRK insulin receptor kinase
VEGFR2 vascular endothelial growth factor receptor 2
BTK Bruton’s tyrosine kinase
RMSD root-mean-square deviation
RMSF root-mean-square fluctuation.
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