350 research outputs found

    Heterosis Is Prevalent for Multiple Traits in Diverse Maize Germplasm

    Get PDF
    BACKGROUND: Heterosis describes the superior phenotypes observed in hybrids relative to their inbred parents. Maize is a model system for studying heterosis due to the high levels of yield heterosis and commercial use of hybrids. METHODS: The inbred lines from an association mapping panel were crossed to a common inbred line, B73, to generate nearly 300 hybrid genotypes. Heterosis was evaluated for seventeen phenotypic traits in multiple environments. The majority of hybrids exhibit better-parent heterosis in most of the hybrids measured. Correlations between the levels of heterosis for different traits were generally weak, suggesting that the genetic basis of heterosis is trait-dependent. CONCLUSIONS: The ability to predict heterosis levels using inbred phenotype or genetic distance between the parents varied for the different traits. For some traits it is possible to explain a significant proportion of the heterosis variation using linear modeling while other traits are more difficult to predict

    High-Resolution Genotyping via Whole Genome Hybridizations to Microarrays Containing Long Oligonucleotide Probes

    Get PDF
    To date, microarray-based genotyping of large, complex plant genomes has been complicated by the need to perform genome complexity reduction to obtain sufficiently strong hybridization signals. Genome complexity reduction techniques are, however, tedious and can introduce unwanted variables into genotyping assays. Here, we report a microarray-based genotyping technology for complex genomes (such as the 2.3 GB maize genome) that does not require genome complexity reduction prior to hybridization. Approximately 200,000 long oligonucleotide probes were identified as being polymorphic between the inbred parents of a mapping population and used to genotype two recombinant inbred lines. While multiple hybridization replicates provided ∼97% accuracy, even a single replicate provided ∼95% accuracy. Genotyping accuracy was further increased to >99% by utilizing information from adjacent probes. This microarray-based method provides a simple, high-density genotyping approach for large, complex genomes

    Methacholine bronchial provocation measured by spirometry versus wheeze detection in preschool children

    Get PDF
    BACKGROUND: Determination of PC(20)-FEV(1) during Methacholine bronchial provocation test (MCT) is considered to be impossible in preschool children, as it requires repetitive spirometry sets. The aim of this study was to assess the feasibility of determining PC(20)-FEV(1) in preschool age children and compares the results to the wheeze detection (PCW) method. METHODS: 55 preschool children (ages 2.8–6.4 years) with recurrent respiratory symptoms were recruited. Baseline spirometry and MCT were performed according to ATS/ERS guidelines and the following parameters were determined at baseline and after each inhalation: spirometry-indices, lung auscultation at tidal breathing, oxygen saturation, respiratory and heart rate. Comparison between PCW and PC(20)-FEV(1) and clinical parameters at these end-points was done by paired Student's t-tests. RESULTS AND DISCUSSION: Thirty-six of 55 children (65.4%) successfully performed spirometry-sets up to the point of PCW. PC(20)-FEV(1) occurred at a mean concentration of 1.70+/-2.01 while PCW occurred at a mean concentration of 4.37+/-3.40 mg/ml (p < 0.05). At PCW, all spirometry-parameters were markedly reduced: FVC by 41.3+/-16.4% (mean +/-SD); FEV(1) by 44.7+/-14.5%; PEFR by 40.5+/-14.5 and FEF(25–75) by 54.7+/-14.4% (P < 0.01 for all parameters). This reduction was accompanied by de-saturation, hyperpnoea, tachycardia and a response to bronchodilators. CONCLUSION: Determination of PC(20)-FEV(1) by spirometry is feasible in many preschool children. PC(20)-FEV(1) often appears at lower provocation dose than PCW. The lower dose may shorten the test and encourage participation. Significant decrease in spirometry indices at PCW suggests that PC(20)-FEV(1) determination may be safer

    Heritable Epigenetic Variation among Maize Inbreds

    Get PDF
    Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation

    The Cassava Genome: Current Progress, Future Directions

    Get PDF
    The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance

    The genome-wide dynamics of purging during selfing in maize

    Get PDF
    Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations

    Maize (Zea mays L.) Genome Diversity as Revealed by RNA-Sequencing

    Get PDF
    Maize is rich in genetic and phenotypic diversity. Understanding the sequence, structural, and expression variation that contributes to phenotypic diversity would facilitate more efficient varietal improvement. RNA based sequencing (RNA-seq) is a powerful approach for transcriptional analysis, assessing sequence variation, and identifying novel transcript sequences, particularly in large, complex, repetitive genomes such as maize. In this study, we sequenced RNA from whole seedlings of 21 maize inbred lines representing diverse North American and exotic germplasm. Single nucleotide polymorphism (SNP) detection identified 351,710 polymorphic loci distributed throughout the genome covering 22,830 annotated genes. Tight clustering of two distinct heterotic groups and exotic lines was evident using these SNPs as genetic markers. Transcript abundance analysis revealed minimal variation in the total number of genes expressed across these 21 lines (57.1% to 66.0%). However, the transcribed gene set among the 21 lines varied, with 48.7% expressed in all of the lines, 27.9% expressed in one to 20 lines, and 23.4% expressed in none of the lines. De novo assembly of RNA-seq reads that did not map to the reference B73 genome sequence revealed 1,321 high confidence novel transcripts, of which, 564 loci were present in all 21 lines, including B73, and 757 loci were restricted to a subset of the lines. RT-PCR validation demonstrated 87.5% concordance with the computational prediction of these expressed novel transcripts. Intriguingly, 145 of the novel de novo assembled loci were present in lines from only one of the two heterotic groups consistent with the hypothesis that, in addition to sequence polymorphisms and transcript abundance, transcript presence/absence variation is present and, thereby, may be a mechanism contributing to the genetic basis of heterosis

    An Evaluation of the Precision of Measurement of Ryff’s Psychological Well-Being Scales in a Population Sample

    Get PDF
    The aim of this study is to assess the effective measurement range of Ryff’s Psychological Well-being scales (PWB). It applies normal ogive item response theory (IRT) methodology using factor analysis procedures for ordinal data based on a limited information estimation approach. The data come from a sample of 1,179 women participating in a midlife follow-up of a national birth cohort study in the UK. The PWB scales incorporate six dimensions: autonomy, positive relations with others, environmental mastery, personal growth, purpose in life and self-acceptance. Scale information functions were calculated to derive standard errors of measurement for estimated scores on each dimension. Construct variance was distinguished from method variance by inclusion of method factors from item wording (positive versus negative). Our IRT analysis revealed that the PWB measures well-being most accurately in the middle range of the score distribution, i.e. for women with average well-being. Score precision diminished at higher levels of well-being, and low well-being was measured more reliably than high well-being. A second-order well-being factor loaded by four of the dimensions achieved higher measurement precision and greater score accuracy across a wider range than any individual dimension. Future development of well-being scales should be designed to include items that are able to discriminate at high levels of well-being
    corecore