9 research outputs found

    The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    Full text link
    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig

    A Constraint on Primordial B-modes from the First Flight of the Spider Balloon-borne Telescope

    Get PDF
    International audienceWe present the first linear polarization measurements from the 2015 long-duration balloon flight of Spider, which is an experiment that is designed to map the polarization of the cosmic microwave background (CMB) on degree angular scales. The results from these measurements include maps and angular power spectra from observations of 4.8% of the sky at 95 and 150 GHz, along with the results of internal consistency tests on these data. While the polarized CMB anisotropy from primordial density perturbations is the dominant signal in this region of sky, Galactic dust emission is also detected with high significance. Galactic synchrotron emission is found to be negligible in the Spider bands. We employ two independent foreground-removal techniques to explore the sensitivity of the cosmological result to the assumptions made by each. The primary method uses a dust template derived from Planckdata to subtract the Galactic dust signal. A second approach, which constitutes a joint analysis of Spider and Planckdata in the harmonic domain, assumes a modified-blackbody model for the spectral energy distribution of the dust with no constraint on its spatial morphology. Using a likelihood that jointly samples the template amplitude and r parameter space, we derive 95% upper limits on the primordial tensor-to-scalar ratio from Feldman–Cousins and Bayesian constructions, finding r < 0.11 and r < 0.19, respectively. Roughly half the uncertainty in r derives from noise associated with the template subtraction. New data at 280 GHz from Spider’s second flight will complement the Planckpolarization maps, providing powerful measurements of the polarized Galactic dust emission
    corecore