109 research outputs found

    Direct recordings of grid-like neuronal activity in human spatial navigation

    Get PDF
    Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes

    Robust water repellent ZnO nanorod array by Swift Heavy Ion Irradiation: Effect of Electronic Excitation Induced Local Chemical State Modification

    Get PDF
    Tailoring the surface properties by varying the chemistry and roughness could be of interest for self-cleaning applications. We demonstrate the transformation of hydrophobic ZnO Nano rod (NR) array into superhydrophobic nature by changing the local chemical state and without altering the surface roughness by swift heavy ion (SHI) irradiation. The aligned ZnO NR arrays were irradiated using 150 MeV Ag ions with different fluences from 5E10 to 3E12 ions/cm2. The observed static water contact angles of ZnO NRs samples were 103° ± 3°, 152° ± 4°,161° ± 3°, 164° ± 2°, 167° ± 2°,154 ± 3° and 151° ± 2° for the pristine, ion fluencies of 1E11, 3E11, 5E11, 7E11, 1E12 and 3E12 ions cm−2, respectively. The change in local surface chemistry via formation of surface oxygen related defects due to electronic excitations induced by ion irradiation determine the water dewetting properties. It is found that surface oxygen related defects could be tuned by varying the fluence of the SHIs. Durability tests show that the SHI induced surface oxygen-deficient ZnO NRs have the stable superhydrophobic behavior for more than a year

    Emergence of Minor Drug-Resistant HIV-1 Variants after Triple Antiretroviral Prophylaxis for Prevention of Vertical HIV-1 Transmission

    Get PDF
    Background: WHO-guidelines for prevention of mother-to-child transmission of HIV-1 in resource-limited settings recommend complex maternal antiretroviral prophylaxis comprising antenatal zidovudine (AZT), nevirapine single-dose (NVP-SD) at labor onset and AZT/lamivudine (3TC) during labor and one week postpartum. Data on resistance development selected by this regimen is not available. We therefore analyzed the emergence of minor drug-resistant HIV-1 variants in Tanzanian women following complex prophylaxis. Method: 1395 pregnant women were tested for HIV-1 at Kyela District Hospital, Tanzania. 87/202 HIV-positive women started complex prophylaxis. Blood samples were collected before start of prophylaxis, at birth and 1–2, 4–6 and 12–16 weeks postpartum. Allele-specific real-time PCR assays specific for HIV-1 subtypes A, C and D were developed and applied on samples of mothers and their vertically infected infants to quantify key resistance mutations of AZT (K70R/T215Y/T215F), NVP (K103N/Y181C) and 3TC (M184V) at detection limits of,1%. Results: 50/87 HIV-infected women having started complex prophylaxis were eligible for the study. All women took AZT with a median duration of 53 days (IQR 39–64); all women ingested NVP-SD, 86 % took 3TC. HIV-1 resistance mutations were detected in 20/50 (40%) women, of which 70 % displayed minority species. Variants with AZT-resistance mutations were found in 11/50 (22%), NVP-resistant variants in 9/50 (18%) and 3TC-resistant variants in 4/50 women (8%). Three wome

    The C-Terminus of Histone H2B Is Involved in Chromatin Compaction Specifically at Telomeres, Independently of Its Monoubiquitylation at Lysine 123

    Get PDF
    Telomeric heterochromatin assembly in budding yeast propagates through the association of Silent Information Regulator (SIR) proteins with nucleosomes, and the nucleosome array has been assumed to fold into a compacted structure. It is believed that the level of compaction and gene repression within heterochromatic regions can be modulated by histone modifications, such as acetylation of H3 lysine 56 and H4 lysine 16, and monoubiquitylation of H2B lysine 123. However, it remains unclear as to whether or not gene silencing is a direct consequence of the compaction of chromatin. Here, by investigating the role of the carboxy-terminus of histone H2B in heterochromatin formation, we identify that the disorderly compaction of chromatin induced by a mutation at H2B T122 specifically hinders telomeric heterochromatin formation. H2B T122 is positioned within the highly conserved AVTKY motif of the αC helix of H2B. Heterochromatin containing the T122E substitution in H2B remains inaccessible to ectopic dam methylase with dramatically increased mobility in sucrose gradients, indicating a compacted chromatin structure. Genetic studies indicate that this unique phenotype is independent of H2B K123 ubiquitylation and Sir4. In addition, using ChIP analysis, we demonstrate that telomere structure in the mutant is further disrupted by a defect in Sir2/Sir3 binding and the resulting invasion of euchromatic histone marks. Thus, we have revealed that the compaction of chromatin per se is not sufficient for heterochromatin formation. Instead, these results suggest that an appropriately arrayed chromatin mediated by H2B C-terminus is required for SIR binding and the subsequent formation of telomeric chromatin in yeast, thereby identifying an intrinsic property of the nucleosome that is required for the establishment of telomeric heterochromatin. This requirement is also likely to exist in higher eukaryotes, as the AVTKY motif of H2B is evolutionarily conserved
    corecore