6,699 research outputs found

    AMPTE/CCE‐SCATHA simultaneous observations of substorm‐associated magnetic fluctuations

    Get PDF
    This study examines substorm-associated magnetic field fluctuations observed by the AMPTE/CCE and SCATHA satellites in the near-Earth tail. Three tail reconfiguration events are selected, one event on August 28, 1986, and two consecutive events on August 30, 1986. The fractal analysis was applied to magnetic field measurements of each satellite. The result indicates that (1) the amplitude of the fluctuation of the north-south magnetic component is larger, though not overwhelmingly, than the amplitudes of the other two components and (2) the magnetic fluctuations do have a characteristic timescale, which is several times the proton gyroperiod. In the examined events the satellite separation was less than 10 times the proton gyroradius. Nevertheless, the comparison between the AMPTE/CCE and SCATHA observations indicates that (3) there was a noticeable time delay between the onsets of the magnetic fluctuations at the two satellite positions, which is too long to ascribe to the propagation of a fast magnetosonic wave, and (4) the coherence of the magnetic fluctuations was low in the August 28, 1986, event and the fluctuations had different characteristic timescales in the first event of August 30, 1986, whereas some similarities can be found for the second event of August 30, 1986. Result 1 indicates that perturbation electric currents associated with the magnetic fluctuations tend to flow parallel to the tail current sheet and are presumably related to the reduction of the tail current intensity. Results 2 and 3 suggest that the excitation of the magnetic fluctuations and therefore the trigger of the tail current disruption is a kinetic process in which ions play an important role. It is inferred from results 3 and 4 that the characteristic spatial scale of the associated instability is of the order of the proton gyroradius or even shorter, and therefore the tail current disruption is described as a system of chaotic filamentary electric currents. However, result 4 suggests that the nature of the tail current disruption can vary from event to event

    Cusp energetic ions: A bow shock source

    Get PDF
    Recent interpretations of cusp energetic ions observed by the POLAR spacecraft have suggested a new energization process in the cusp [Chen et al., 1997; 1998]. Simultaneous enhancement of H+, He+2, and O\u3e+2 fluxes indicates that they are of solar wind origin. In the present study, we examine H+ and He+2 energy spectra from 20 eV to several 100 keV measured by the Hydra, Toroidal Imaging Mass-Angle Spectrograph (TIMAS), and Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) on POLAR. The combined spectrum for each species is shown to be continuous with a thermal distribution below 10 keV/e and an energetic component above 20 keV/e. Energetic ions with comparable fluxes and a similar spectral shape are commonly observed downstream from the Earth\u27s quasi-parallel (Q∥) bow shock. In addition to the similarity in the ion spectra, electric and magnetic field noise and turbulence detected in the cusp by the Plasma Wave Instrument (PWI) and Magnetic Field Experiment (MFE) onboard POLAR are similar to the previously reported observations at the bow shock. The waves appear to be coincidental to the cusp energetic ions rather than causal. We suggest that these ions are not accelerated locally in the cusp. Rather, they are accelerated at the Q∥ bow shock and enter the cusp along open magnetic field lines connecting both regions

    Application and testing of the L neural network with the self-consistent magnetic field model of RAM-SCB

    Get PDF
    Abstract We expanded our previous work on L neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained networks and validated by the tracing method in the International Radiation Belt Environment Modeling (IRBEM) library. The accuracy of all L neural networks with different underlying magnetic field models is evaluated by applying the electron phase space density (PSD)-matching technique derived from the Liouville\u27s theorem to the Van Allen Probes observations. Results indicate that the uncertainty in the predicted L is statistically (75%) below 0.7 with a median value mostly below 0.2 and the median absolute deviation around 0.15, regardless of the underlying magnetic field model. We found that such an uncertainty in the calculated L value can shift the peak location of electron phase space density (PSD) profile by 0.2 RE radially but with its shape nearly preserved. Key Points L* neural network based on RAM-SCB model is developed L* calculation accuracy is estimated by PSD matching using RBSP data L* uncertainty causes a radial shift in the electron phase space density profile

    Posteruptive phenomena in coronal mass ejections and substorms: Indicators of a universal process?

    Get PDF
    [1] We examine phenomena associated with eruptions in the two different regimes of the solar corona and the terrestrial magnetosphere. We find striking similarities between the speeds of shrinking magnetic field lines in the corona and dipolarization fronts traversing the magnetosphere. We also examine the similarities between supra-arcade downflows observed during solar flares and bursty bulk flows seen in the magnetotail and find that these phenomena have remarkably similar speeds, velocity profiles, and size scales. Thus we show manifest similarities in the magnetic reconfiguration in response to the ejection of coronal mass ejections in the corona and the ejection of plasmoids in the magnetotail. The subsequent return of loops to a quasi-potential state in the corona and field dipolarization in the magnetotail are physical analogs and trigger similar phenomena such as downflows, which provides key insights into the underlying drivers of the plasma dynamics

    Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations

    Get PDF
    We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout the plasma trough and remains at ∼1 amu in the plasmasphere, implying that ionospheric O+ ions are supplied into the inner magnetosphere already in the initial phase of the magnetic storm. Numerical calculation under a decrease of the convection electric field reveals that some of thermal O+ ions distributed throughout the plasma trough are trapped within the expanded plasmasphere, whereas some of them drift around the plasmapause on the dawnside. This creates the oxygen torus spreading near the plasmapause, which is consistent with the Van Allen Probes observations. We conclude that the oxygen torus identified in this study favors the formation scenario of supplying O+ in the inner magnetosphere during the initial phase and subsequent drift during the recovery phase

    Spatially valid proprioceptive cues improve the detection of a visual stimulus

    Get PDF
    Vision and proprioception are the main sensory modalities that convey hand location and direction of movement. Fusion of these sensory signals into a single robust percept is now well documented. However, it is not known whether these modalities also interact in the spatial allocation of attention, which has been demonstrated for other modality pairings. The aim of this study was to test whether proprioceptive signals can spatially cue a visual target to improve its detection. Participants were instructed to use a planar manipulandum in a forward reaching action and determine during this movement whether a near-threshold visual target appeared at either of two lateral positions. The target presentation was followed by a masking stimulus, which made its possible location unambiguous, but not its presence. Proprioceptive cues were given by applying a brief lateral force to the participant’s arm, either in the same direction (validly cued) or in the opposite direction (invalidly cued) to the on-screen location of the mask. The d′ detection rate of the target increased when the direction of proprioceptive stimulus was compatible with the location of the visual target compared to when it was incompatible. These results suggest that proprioception influences the allocation of attention in visual spac

    Use of extended and prepared reference objects in experimental Fourier transform X-ray holography

    Full text link
    The use of one or more gold nanoballs as reference objects for Fourier Transform holography (FTH) is analysed using experimental soft X-ray diffraction from objects consisting of separated clusters of these balls. The holograms are deconvoluted against ball reference objects to invert to images, in combination with a Wiener filter to control noise. A resolution of ~30nm, smaller than one ball, is obtained even if a large cluster of balls is used as the reference, giving the best resolution yet obtained by X-ray FTH. Methods of dealing with missing data due to a beamstop are discussed. Practical prepared objects which satisfy the FTH condition are suggested, and methods of forming them described.Comment: 7 pages, 2 figures, submitted to Applied Physics Letter
    corecore