70 research outputs found

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    Biosynthesis and characterization of a novel, biocompatible medium chain length polyhydroxyalkanoate by Pseudomonas mendocina CH50 using coconut oil as the carbon source

    Get PDF
    This study validated the utilization of triacylglycerides (TAGs) by Pseudomonas mendocina CH50, a wild type strain, resulting in the production of novel mcl-PHAs with unique physical properties. A PHA yield of 58% dcw was obtained using 20g/L of coconut oil. Chemical and structural characterisation confirmed that the mcl-PHA produced was a terpolymer comprising of three different repeating monomer units, 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-hydroxydodecanoate or P(3HO-3HD-3HDD). Bearing in mind the potential of P(3HO-3HD-3HDD) in biomedical research, especially in neural tissue engineering, in vitro biocompatibility studies were carried out using NG108-15 (neuronal) cells. Cell viability data confirmed that P(3HO-3HD-3HDD) supported the attachment and proliferation of NG108-15 and was therefore, confirmed to be biocompatible in nature and suitable for neural regeneration

    Iodixanol

    No full text
    corecore