14 research outputs found

    Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco

    Get PDF
    The cucumber mosaic virus (CMV) 2b protein not only inhibits anti-viral RNA silencing but also quenches transcriptional responses of plant genes to jasmonic acid, a key signalling molecule in defence against insects. This suggested that it might affect interactions between infected plants and aphids, insects that transmit CMV. We found that infection of tobacco with a 2b gene deletion mutant (CMVD2b) induced strong resistance to aphids (Myzus persicae) while CMV infection fostered aphid survival. Using electrical penetration graph methodology we found that higher proportions of aphids showed sustained phloem ingestion on CMV-infected plants than on CMVD2b-infected or mock-inoculated plants although this did not increase the rate of growth of individual aphids. This indicates that while CMV infection or certain viral gene products might elicit aphid resistance, the 2b protein normally counteracts this during a wild-type CMV infection. Our findings suggest that the 2b protein could indirectly affect aphid-mediated virus transmission

    A Functional Genomics Approach Identifies Candidate Effectors from the Aphid Species Myzus persicae (Green Peach Aphid)

    Get PDF
    Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors) inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs) to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid), based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP)–mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX) expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we identified aphid salivary proteins that share features with plant pathogen effectors and therefore may function as aphid effectors by perturbing host cellular processes

    Water Flows and Urban Planning

    No full text

    Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two naturally susceptible varieties Triticum aestivum (L.) variety Solstice and T. monococcum MDR037, and two naturally resistant lines, T. monococcum MDR045 and MDR049. Mycorrhizal colonisation increased the attractiveness of T. aestivum var. Solstice to aphids, but there was no effect on aphid development on this variety. Using the Electrical Penetration Graph (EPG) technique, we found that mycorrhizal colonisation increased aphid phloem feeding on T. monococcum MDR037 and MDR045, colonisation also increased growth rate and reproductive success of S. avenae on these varieties. Mycorrhizas increased vascular bundle size, demonstrating that these fungi can influence plant anatomy. We discuss if and how this could be related to an enhanced success rate in phloem feeding in two varieties. Overall, we present and discuss how mycorrhizal fungi can affect the feeding behaviour of S. avenae in wheat, inducing susceptibility in a resistant variety
    corecore