49 research outputs found
Lipocalin-7 Is a Matricellular Regulator of Angiogenesis
Matricellular proteins are extracellular regulators of cellular adhesion, signaling and performing a variety of physiological behaviors such as proliferation, migration and differentiation. Within vascular microenvironments, matricellular proteins exert both positive and negative regulatory cues to vascular endothelium. The relative balance of these matricellular cues is believed to be critical for vascular homeostasis, angiogenesis activation or angiogenesis resolution. However, our knowledge of matricellular proteins within vascular microenvironments and the mechanisms by which these proteins impact vascular function remain largely undefined. The matricellular protein lipocalin-7 (LCN7) is found throughout vascular microenvironments, and circumstantial evidence suggests that LCN7 may be an important regulator of angiogenesis. Therefore, we hypothesized that LCN7 may be an important regulator of vascular function.To test this hypothesis, we examined the effect of LCN7 overexpression, recombinant protein and gene knockdown in a series of in vitro and in vivo models of angiogenesis. We found that overexpression of LCN7 in MB114 and SVEC murine endothelial cell lines or administration of highly purified recombinant LCN7 protein increased endothelial cell invasion. Similarly, LCN7 increased angiogenic sprouting from quiescent endothelial cell monolayers and ex vivo aortic rings. Moreover, LCN7 increased endothelial cell sensitivity to TGF-β but did not affect sensitivity to other pro-angiogenic growth factors including bFGF and VEGF. Finally, morpholino based knockdown of LCN7 in zebrafish embryos specifically inhibited angiogenic sprouting but did not affect vasculogenesis within injected embryos.No functional analysis has previously been performed to elucidate the function of LCN7 in vascular or other cellular processes. Collectively, our results show for the first time that LCN7 is an important pro-angiogenic matricellular protein of vascular microenvironments
Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes
<p>Abstract</p> <p>Background</p> <p>Proteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.</p> <p>The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular matrix (ECM) of atherosclerotic plaques by cathepsin K mediated processes.</p> <p>Methods</p> <p>We 1) cultured human macrophages on ECM and measured cathepsin K generated fragments of type I collagen (C-terminal fragments of Type I collagen (CTX-I) 2) investigated the presence of CTX-I in human coronary arteries and 3) finally investigated the clinical potential by measuring circulating CTX-I in women with and without radiographic evidence of aortic calcified atherosclerosis.</p> <p>Results</p> <p>Immune-histochemistry of early and advanced lesions of coronary arteries demonstrated co-localization of Cathepsin-K and CTX-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women with aortic calcifications compared to those without.</p> <p>Conclusions</p> <p>Human macrophage foam cells degrade the atherosclerotic plaques though cathepsin K mediated processes, resulting in increase in levels of CTX-I. Serum CTX-I was not elevated in women with aortic calcification, likely due to the contribution of CTX-I from osteoclastic bone resorption which involves Cathepsin-K. The human macrophage model system may be used to identify important pathway leading to excessive proteolytic plaque remodeling and plaque rupture.</p
Cathepsin S Deficiency Results in Abnormal Accumulation of Autophagosomes in Macrophages and Enhances Ang II–Induced Cardiac Inflammation
BACKGROUND: Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice. METHODS AND RESULTS: Cat S-knockout (Cat S(-/-)) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S(-/-) mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S(-/-) than WT hearts. These Ang II-induced effects in Cat S(-/-) mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages. CONCLUSION: Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis
How does heparin prevent the pH inactivation of cathepsin B? Allosteric mechanism elucidated by docking and molecular dynamics
A clinical evaluation of statin pleiotropy: statins selectively and dose-dependently reduce vascular inflammation
Contains fulltext :
118070.pdf (publisher's version ) (Open Access)Statins are thought to reduce vascular inflammation through lipid independent mechanisms. Evaluation of such an effect in atherosclerotic disease is complicated by simultaneous effects on lipid metabolism. Abdominal aortic aneurysms (AAA) are part of the atherosclerotic spectrum of diseases. Unlike atherosclerotic occlusive disease, AAA is not lipid driven, thus allowing direct evaluation of putative anti-inflammatory effects. The anti-inflammatory potency of increasing doses (0, 20 or 40 mg/day) simvastatin or atorvastatin was evaluated in 63 patients that were at least 6 weeks on statin therapy and who underwent open AAA repair. A comprehensive analysis using immunohistochemistry, mRNA and protein analyses was applied on aortic wall samples collected during surgery. The effect of statins on AAA growth was analyzed in a separate prospective study in incorporating 142 patients. Both statins equally effectively and dose-dependently reduced aortic wall expression of NFkappaB regulated mediators (i.e. IL-6 (P<0.001) and MCP-1 (P<0.001)); shifted macrophage polarization towards a M2 phenotype (P<0.0003); selectively reduced macrophage-related markers such as cathepsin K and S (P<0.009 and 0.0027 respectively), and ALOX5 (P<0.0009), and reduced vascular wall NFkappaB activity (40 mg/day group, P<0.016). No effect was found on other cell types. Evaluation of the clinical efficacy of statins to reduce AAA progression did not indicate an effect of statins on aneurysm growth (P<0.337). Hence, in the context of AAA the clinical relevance of statins pleiotropy appears minimal
Cathepsin K Deficiency Prevents the Aggravated Vascular Remodeling Response to Flow Cessation in ApoE-/- Mice
Effect of serum amyloid A1 treatment on global gene expression in THP-1-derived macrophages
10.1007/s00011-011-0424-4Inflammation Research614391-398INRE
