37 research outputs found

    Baculovirus Capsid Display Potentiates OVA Cytotoxic and Innate Immune Responses

    Get PDF
    Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination

    Scenario Analysis as a Tool for Informing the Design of Behaviour Change Interventions

    Get PDF
    This article presents the design process behind the specification of a behaviour change intervention method to promote energy saving. The amount of energy used for food preparation is highly influenced by people’s behaviours. A user-centred design approach based on scenario analysis was applied to provide understanding of context of use and specification of user requirements. This knowledge was applied to the design of behaviour change interventions to motivate sustainable behaviours

    The Concise Guide to PHARMACOLOGY 2013/14: overview.

    No full text
    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates

    6-O sulfated and N-sulfated Syndecan-1 promotes baculovirus binding and entry into mammalian cells.

    No full text
    Baculoviruses are insect-specific viruses commonly found in nature. They are not able to replicate in mammalian cells but can transduce them when equipped with an appropriate mammalian cell active expression cassette. Although the viruses have been studied in several types of mammalian cells from different origins, the receptor that baculovirus uses to enter or interact with mammalian cells has not yet been identified. Due to the wide tropism of the virus, the receptor has been suggested to be a generally found cell surface molecule. In this article, we investigated the interaction of baculovirus and mammalian cell surface heparan sulfate proteoglycans (HSPG) in more detail. Our data show that baculovirus requires HSPG sulfation, particularly N- and 6-O-sulfation, to bind to and transduce mammalian cells. According to our results, baculovirus binds specifically to syndecan-1 (SDC-1) but does not interact with SDC-2 to SDC-4 or with glypicans. Competition experiments performed with SDC-1 antibody or recombinant SDC-1 protein inhibited baculovirus binding, and SDC-1 overexpression enhanced baculovirus-mediated transduction. In conclusion, we show that SDC-1, a commonly found cell surface HSPG molecule, has a role in the binding and entry of baculovirus in vertebrate cells. The results presented here reveal important aspects of baculovirus entry and can serve as a basis for next-generation baculovirus vector development for gene delivery.peerReviewe
    corecore