24 research outputs found

    Innate immune signaling in hearts and buccal mucosa cells of patients with arrhythmogenic cardiomyopathy

    Get PDF
    Background: Nuclear factor κB (NF-κB) signaling in cardiac myocytes causes disease in a mouse model of arrhythmogenic cardiomyopathy (ACM) by mobilizing CCR2-expressing macrophages that promote myocardial injury and arrhythmias. Buccal mucosa cells exhibit pathologic features similar to those seen in cardiac myocytes in patients with ACM. Objectives: We sought to determine if persistent innate immune signaling via NF-κB occurs in cardiac myocytes in patients with ACM and if this is associated with myocardial infiltration of proinflammatory cells expressing CCR2. We also determined if buccal mucosa cells from young subjects with inherited disease alleles exhibit NF-κB signaling. Methods: We analyzed myocardium from ACM patients who died suddenly or required cardiac transplantation. We also analyzed buccal mucosa cells from young subjects with inherited disease alleles. The presence of immunoreactive signal for RelA/p65 in nuclei of cardiac myocytes and buccal cells was used as a reliable indicator of active NF-κB signaling. We also counted myocardial CCR2-expressing cells. Results: RelA/p65 signal was seen in numerous cardiac myocyte nuclei in 34 of 36 cases of ACM but not in 19 age-matched control individuals. Cells expressing CCR2 were increased in patient hearts in numbers directly correlated with the number of cardiac myocytes showing NF-κB signaling. NF-κB signaling was observed in buccal cells in young subjects with active disease. Conclusions: Patients with clinically active ACM exhibit persistent innate immune responses in cardiac myocytes and buccal mucosa cells, reflecting a local and systemic inflammatory process. Such individuals may benefit from anti-inflammatory therapy

    Alterations in integrin expression modulates invasion of pancreatic cancer cells

    Get PDF
    Background Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. Methods In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. Results Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin β1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. Conclusion Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma

    Influence of amyloglucosidase in bread crust properties

    Get PDF
    Enzymes are used in baking as a useful tool for improving the processing behavior or properties of baked products. A number of enzymes have been proposed for improving specific volume, imparting softness, or extend the shelf life of breads, but scarce studies have been focused on bread crust. The aim of this study was to determine the use of amyloglucosidase for modulating the properties of the bread crust and increase its crispness. Increasing levels of enzyme were applied onto the surface of two different partially bake breads (thin and thick crust bread). Amyloglucosidase treatment affected significantly (P<0.05) the color of the crust and decreased the moisture content and water activity of the crusts. Mechanical properties were modified by amyloglucosidase, namely increasing levels of enzyme promoted a decrease in the force (Fm) required for crust rupture and an increase in the number of fracture events (Nwr) related to crispy products. Crust microstructure analysis confirmed that enzymatic treatment caused changes in the bread crust structure, leading to a disruption of the structure, by removing the starchy layer that covered the granules and increasing the number of voids, which agree with the texture fragility.Authors acknowledge the financial support of Spanish Ministry of Economy and Sustainability (Project AGL2011-23802), the European Regional Development Fund (FEDER), Generalitat Valenciana (Project Prometeo 2012/064) and the Consejo Superior de Investigaciones Cientificas (CSIC). R. Altamirano-Fortoul would like to thank her grant to CSIC. The authors also thank Forns Valencians S. A. (Spain) for supplying commercial frozen partially baked breads.Altamirano Fortoul, RDC.; Hernando Hernando, MI.; Molina Rosell, MC. (2014). Influence of amyloglucosidase in bread crust properties. Food and Bioprocess Technology. 7(4):1037-1046. https://doi.org/10.1007/s11947-013-1084-xS1037104674Altamirano-Fortoul R, Hernando I & Rosell CM (2013) Texture of bread crust: puncturing settings effect and its relationship to microstructure. Journal of Texture Studies. doi: 10.1111/j.1745-4603.2012.00368.x .Altamirano-Fortoul, R., Le Bail, A., Chevallier, S., & Rosell, C. M. (2012). Effect of the amount of steam during baking on bread crust features and water diffusion. Journal of Food Engineering, 108, 128–134.Altamirano-Fortoul R & Rosell CM (2010) Alternatives for extending crispiness of crusty breads. In Proceedings of International Conference on Food Innovation, FoodInnova, 25–29 October 2010, Valencia, Spain. ISBN978-84-693-5011-.9.Arimi, J. M., Duggan, E., O’sullivan, M., Lyng, J. G., & O’riordan, E. D. (2010). Effect of water activity on the crispiness of a biscuit (crackerbread): mechanical and acoustic evaluation. Food Research International, 43, 1650–1655.Castro-Prada, E. M., Primo-Martin, C., Meinders, M. B. J., Hamer, R. J., & Van Vliet, T. (2009). Relationship between water activity, deformation speed, and crispness characterization. Journal of Texture Studies, 40, 127–156.Esveld, D. C., Van Der Sman, R. G. M., Van Dalen, G., Van Duynhoven, J. P. M., & Meinders, M. B. J. (2012). Effect of morphology on water sorption in cellular solid foods. Part I: Pore Scale Network Model. Journal of Food Engineering, 109, 301–310.Goedeken, D. L., & Tong, C. H. (1993). Permeability measurements of porous food materials. Journal of Food Science, 58, 1329–1331.Gondek, E., Lewicki, P. P., & Ranachowski, Z. (2006). Influence of water activity on the acoustic properties of breakfast cereals. Journal of Texture Studies, 37, 497–515.Guerrieri, N., Eynard, L., Lavelli, V., & Cerletti, P. (1997). Interactions of protein and starch studied through amyloglucosidase action. Cereal Chemistry, 74, 846–850.ICC. (1994). Standard methods of the International Association for Cereal Science and Technology. Vienna: Austria.Heenan, S. P., Dufour, J. P., Hamid, N., Harvey, W., & Delahunty, C. M. (2008). The sensory quality of fresh bread: descriptive attributes and consumer perceptions. Food Research International, 41, 989–997.Heiniö, R. L., Nordlund, E., Poutanen, K., & Buchert, J. (2012). Use of enzymes to elucidate the factors contributing to bitterness in rye flavor. Food Research International, 45, 31–38.Hug-Iten, S., Escher, F., & Conde-Petit, B. (2003). Staling of bread: role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chemistry., 80(6), 654–661.Jakubczyk, E., Marzec, A., & Lewicki, P. P. (2008). Relationship between water activity of crisp bread and its mechanical properties and structure. Polish Journal of Food and Nutrition Sciences, 58(1), 45–51.Luyten, A., Pluter, J. J., & Van Vliet, T. (2004). Crispy/crunchy crusts of cellular solid foods: a literature review with discussion. Journal of Texture Studies, 35, 445–492.Potter, N. N., & Hotchkiss, J. H. (1998). Food dehydration and concentration. In N. N. Potter & J. H. Hotchkiss (Eds.), Food Science (5th ed.). New York: Aspen Publishers.Primo-Martin, C., Van de Pijpekamp, A., Van Vliet, T., Jongh, H. H. J., Plijter, J. J., & Hamer, R. J. (2006). The role of the gluten network in the crispness of bread crust. Journal of Cereal Science, 43, 342–352.Primo-Martin, C., Sozer, N., Hamer, R. J., & Van Vliet, T. (2009). Effect of water activity on fracture and acoustic characteristics of a crust model. Journal of Food Engineering, 90, 277–284.Roudaut, G., Dacremont, C., & Le Meste, M. (1998). Influence of water on the crispness of cereal-based foods: acoustic, mechanical, and sensory studies. Journal of Texture Studies, 29, 199–213.Roudaut, G., Dacremont, C., Pamies, B. V., Colas, B., & Le Meste, M. (2002). Crispness: a critical review on sensory and material science approaches. Trends in Food Science and Technology, 13, 217–227.Rojas JA (2000) Uso combinado de hidrocoloides y alfa-amilasa como mejorantes en panificación. Dissertation PhD Thesis. Universidad Politécnica de ValenciaRosell, C. M. (2007). Vitamin and mineral fortification of bread. In B. Hamaker (Ed.), Technology of functional cereal products. Cambridge: Woodhead Publishing Ltd.Rosell, C. M. (2011). The science of doughs and bread quality. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Flour and breads and their fortification in health and disease prevention (pp. 3–14). London: Academic.Rosell CM, Altamirano-Fortoul R & Hernando I (2011) Mechanical properties of bread crust by puncture test and the effect of sprayed enzymes. In: Proceedings of 6th International Congress Flour. Bread’11, 8th Croatian Congress of Cereal Technologist, 12–14 October 2011, Opatija, Croatia. ISSN 1848–2562.Sahlström, S., & Brathen, E. (1997). Effects of enzyme preparations for baking, mixing time and resting time on bread quality and bread staling. Food Chemistry, 58, 75–80.Sharma K & Singh J (2010) Enzymes in baking industry. Panesar, P.S.; Marwaha, S.S and Chopra, H.K. (Eds), Enzymes in food processing, fundamentals and potential applications, IK International Publishing House Pvt. Ltd, New Delhi, India.Stokes, D. J., & Donald, A. M. (2000). In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). Journal of Materials Science, 35, 599–607.Tsukakoshi, Y., Naito, S., & Ishida, N. (2008). Fracture intermittency during a puncture test of cereal snacks and its relation to porous structure. Food Research International, 41, 909–917.Van Benschop CHM, Terdu AG & Hille JDR (2012) Baking enzyme composition as SSL replacer. Patent No.US2012164272.Van Eijk JH (1991) Retarding the firming of bread crumb during storage. Patent No. US5023094.Van Hecke, E., Allaf, K., & Bouvier, J. M. (1998). Texture and structure of crispy-puffed food products—part II: mechanical properties in puncture. Journal of Texture Studies, 29, 617–632.Vanin, F. M., Lucas, T., & Trystram, G. (2009). Crust formation and its role during bread baking. Trends in Food Science and Technology, 20, 333–343.Van Nieuwenhuijzen, N. H., Primo-Martin, C., Meinders, M. B. J., Tromp, R. H., Hamer, R. J., & Van Vliet, T. (2008). Water content or water activity: what rules crispy behavior in bread crust? Journal of Agricultural and Food Chemistry, 56, 6432–6438.Van Oort, M. (2010). Enzymes in bread making. In R. J. Whitehurst & M. Van Oort (Eds.), Enzymes in food technology (2nd ed.). Iowa: Wiley-Blackwell.Vidal, F.D., Guerrety, A.B. (1979) Antistaling agent for bakery products. Patent No. US54160848.Wählby, U., & Skjoldebrand, C. (2002). Reheating characteristic of crust formed on buns, and crust formation. Journal of Food Engineering, 53, 177–184.Würsch, P., & Gumy, D. (1994). Inhibition of amylopectin retrogradation by partial beta-amylosis. Carbohydrate Research, 256, 129–137.Xiong, X., Narsimhan, G., & Okos, M. R. (1991). Effect of composition and pore structure on binding energy and effective diffusivity of moisture in porous foods. Journal of Food Engineering, 15, 187–208

    Rhizobia with 16S rRNA and nifH Similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC Genes Are Symbionts of New Zealand Carmichaelinae

    Get PDF
    New Zealand became geographically isolated about 80 million years ago and this separation gave rise to a unique native flora including four genera of legume, Carmichaelia, Clianthus and Montigena in the Carmichaelinae clade, tribe Galegeae, and Sophora, tribe Sophoreae, sub-family Papilionoideae. Ten bacterial strains isolated from NZ Carmichaelinae growing in natural ecosystems grouped close to the Mesorhizobium huakuii type strain in relation to their 16S rRNA and nifH gene sequences. However, the ten strains separated into four groups on the basis of their recA and glnII sequences: all groups were clearly distinct from all Mesorhizobium type strains. The ten strains separated into two groups on the basis of their nodA sequences but grouped closely together in relation to nodC sequences; all nodA and nodC sequences were novel. Seven strains selected and the M. huakuii type strain (isolated from Astragalus sinicus) produced functional nodules on Carmichaelia spp., Clianthus puniceus and A. sinicus but did not nodulate two Sophora species. We conclude that rhizobia closely related to M. huakuii on the basis of 16S rRNA and nifH gene sequences, but with variable recA and glnII genes and novel nodA and nodC genes, are common symbionts of NZ Carmichaelinae. © 2012 Tan et al
    corecore